@article{AndreattaMuehlbergerGlotzbachSchoonetal.2013, author = {Andreatta, Marta and M{\"u}hlberger, Andreas and Glotzbach-Schoon, Evelyn and Pauli, Paul}, title = {Pain predictability reverses valence ratings of a relief-associated stimulus}, series = {Front in Systems Neuroscience}, volume = {7}, journal = {Front in Systems Neuroscience}, number = {53}, doi = {10.3389/fnsys.2013.00053}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-129275}, year = {2013}, abstract = {Relief from pain is positively valenced and entails reward-like properties. Notably, stimuli that became associated with pain relief elicit reward-like implicit responses too, but are explicitly evaluated by humans as aversive. Since the unpredictability of pain makes pain more aversive, this study examined the hypotheses that the predictability of pain also modulates the valence of relief-associated stimuli. In two studies, we presented one conditioned stimulus \((_{FORWARD}CS+)\) before a painful unconditioned stimulus (US), another stimulus \((_{BACKWARD}CS+)\) after the painful US, and a third stimulus (CS-) was never associated with the US. In Study 1, \(_{FORWARD}CS+\) predicted half of the USs while the other half was delivered unwarned and followed by \(_{BACKWARD}CS+\). In Study 2, all USs were predicted by \(_{FORWARD}CS+\) and followed by \(_{BACKWARD}CS+\). In Study 1 both \(_{FORWARD}CS+\) and \(_{BACKWARD}CS+\) were rated as negatively valenced and high arousing after conditioning, while \(_{BACKWARD}CS+\) in Study 2 acquired positive valence and low arousal. Startle amplitude was significantly attenuated to \(_{BACKWARD}CS+\) compared to \(_{FORWARD}CS+\) in Study 2, but did not differ among CSs in Study 1. In summary, predictability of aversive events reverses the explicit valence of a relief-associated stimulus.}, language = {en} } @article{SchwarzWieserGerdesetal.2013, author = {Schwarz, Katharina A. and Wieser, Matthias J. and Gerdes, Antje B. M. and M{\"u}hlberger, Andreas and Pauli, Paul}, title = {Why are you looking like that? How the context influences evaluation and processing of human faces}, series = {Social Cognitive and Affective Neuroscience}, volume = {8}, journal = {Social Cognitive and Affective Neuroscience}, number = {4}, doi = {10.1093/scan/nss013}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132126}, pages = {438-445}, year = {2013}, abstract = {Perception and evaluation of facial expressions are known to be heavily modulated by emotional features of contextual information. Such contextual effects, however, might also be driven by non-emotional aspects of contextual information, an interaction of emotional and non-emotional factors, and by the observers' inherent traits. Therefore, we sought to assess whether contextual information about self-reference in addition to information about valence influences the evaluation and neural processing of neutral faces. Furthermore, we investigated whether social anxiety moderates these effects. In the present functional magnetic resonance imaging (fMRI) study, participants viewed neutral facial expressions preceded by a contextual sentence conveying either positive or negative evaluations about the participant or about somebody else. Contextual influences were reflected in rating and fMRI measures, with strong effects of self-reference on brain activity in the medial prefrontal cortex and right fusiform gyrus. Additionally, social anxiety strongly affected the response to faces conveying negative, self-related evaluations as revealed by the participants' rating patterns and brain activity in cortical midline structures and regions of interest in the left and right middle frontal gyrus. These results suggest that face perception and processing are highly individual processes influenced by emotional and non-emotional aspects of contextual information and further modulated by individual personality traits.}, language = {en} } @phdthesis{Sollfrank2015, author = {Sollfrank, Teresa}, title = {Feedback efficiency and training effects during alpha band modulation over the sensorimotor cortex}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131769}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Neural oscillations can be measured by electroencephalography (EEG) and these oscillations can be characterized by their frequency, amplitude and phase. The mechanistic properties of neural oscillations and their synchronization are able to explain various aspects of many cognitive functions such as motor control, memory, attention, information transfer across brain regions, segmentation of the sensory input and perception (Arnal and Giraud, 2012). The alpha band frequency is the dominant oscillation in the human brain. This oscillatory activity is found in the scalp EEG at frequencies around 8-13 Hz in all healthy adults (Makeig et al., 2002) and considerable interest has been generated in exploring EEG alpha oscillations with regard to their role in cognitive (Klimesch et al., 1993; Hanselmayr et al., 2005), sensorimotor (Birbaumer, 2006; Sauseng et al., 2009) and physiological (Lehmann, 1971; Niedermeyer, 1997; Kiyatkin, 2010) aspects of human life. The ability to voluntarily regulate the alpha amplitude can be learned with neurofeedback training and offers the possibility to control a brain-computer interface (BCI), a muscle independent interaction channel. BCI research is predominantly focused on the signal processing, the classification and the algorithms necessary to translate brain signals into control commands than on the person interacting with the technical system. The end-user must be properly trained to be able to successfully use the BCI and factors such as task instructions, training, and especially feedback can therefore play an important role in learning to control a BCI (Neumann and K{\"u}bler, 2003; Pfurtscheller et al., 2006, 2007; Allison and Neuper, 2010; Friedrich et al., 2012; Kaufmann et al., 2013; Lotte et al., 2013). The main purpose of this thesis was to investigate how end-users can efficiently be trained to perform alpha band modulation recorded over their sensorimotor cortex. The herein presented work comprises three studies with healthy participants and participants with schizophrenia focusing on the effects of feedback and training time on cortical activation patterns and performance. In the first study, the application of a realistic visual feedback to support end-users in developing a concrete feeling of kinesthetic motor imagery was tested in 2D and 3D visualization modality during a single training session. Participants were able to elicit the typical event-related desynchronisation responses over sensorimotor cortex in both conditions but the most significant decrease in the alpha band power was obtained following the three-dimensional realistic visualization. The second study strengthen the hypothesis that an enriched visual feedback with information about the quality of the input signal supports an easier approach for motor imagery based BCI control and can help to enhance performance. Significantly better performance levels were measurable during five online training sessions in the groups with enriched feedback as compared to a conventional simple visual feedback group, without significant differences in performance between the unimodal (visual) and multimodal (auditory-visual) feedback modality. Furthermore, the last study, in which people with schizophrenia participated in multiple sessions with simple feedback, demonstrated that these patients can learn to voluntarily regulate their alpha band. Compared to the healthy group they required longer training times and could not achieve performance levels as high as the control group. Nonetheless, alpha neurofeedback training lead to a constant increase of the alpha resting power across all 20 training session. To date only little is known about the effects of feedback and training time on BCI performance and cortical activation patterns. The presented work contributes to the evidence that healthy individuals can benefit from enriched feedback: A realistic presentation can support participants in getting a concrete feeling of motor imagery and enriched feedback, which instructs participants about the quality of their input signal can give support while learning to control the BCI. This thesis demonstrates that people with schizophrenia can learn to gain control of their alpha oscillations recorded over the sensorimotor cortex when participating in sufficient training sessions. In conclusion, this thesis improved current motor imagery BCI feedback protocols and enhanced our understanding of the interplay between feedback and BCI performance.}, subject = {Neurofeedback}, language = {en} } @article{FischerPlessowKiesel2013, author = {Fischer, Rico and Plessow, Franziska and Kiesel, Andrea}, title = {The effects of alerting signals in masked priming}, series = {Frontiers in Psychology}, volume = {4}, journal = {Frontiers in Psychology}, number = {448}, issn = {1664-1078}, doi = {10.3389/fpsyg.2013.00448}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122581}, year = {2013}, abstract = {Alerting signals often serve to reduce temporal uncertainty by predicting the time of stimulus onset. The resulting response time benefits have often been explained by facilitated translation of stimulus codes into response codes on the basis of established stimulus-response (S-R) links. In paradigms of masked S-R priming alerting signals also modulate response activation processes triggered by subliminally presented prime stimuli. In the present study we tested whether facilitation of visuo-motor translation processes due to alerting signals critically depends on established S-R links. Alerting signals resulted in significantly enhanced masked priming effects for masked prime stimuli that included and that did not include established S-R links fi.e., target vs. novel primes). Yet, the alerting-priming interaction was more pronounced for target than for novel primes. These results suggest that effects of alerting signals on masked priming are especially evident when S-R links between prime and target exist. At the same time, an alerting-priming interaction also for novel primes suggests that alerting signals also facilitate stimulus-response translation processes when masked prime stimuli provide action-trigger conditions in terms of programmed S-R links.}, language = {en} } @article{MeuleKueblerBlechert2013, author = {Meule, Adrian and K{\"u}bler, Andrea and Blechert, Jens}, title = {Time course of electrocortical food-cue responses during cognitive regulation of craving}, series = {Frontiers in Psychology}, volume = {4}, journal = {Frontiers in Psychology}, number = {669}, issn = {1664-1078}, doi = {10.3389/fpsyg.2013.00669}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122566}, year = {2013}, abstract = {In our current obesogenic environment, exposure to visual food-cues can easily lead to craving and overeating because short-term, pleasurable effects of food intake dominate over the anticipated long-term adverse effects such as weight gain and associated health problems. Here we contrasted these two conditions during food-cue presentation while acquiring event-related potentials (ERPs) and subjective craving ratings. Female participants (n = 25) were presented with either high-calorie (HC) or low-calorie (LC) food images under instructions to imagine either immediate (NOW) or long-term effects (LATER) of consumption. On subjective ratings for HC foods, the LATER perspective reduced cravings as compared to the NOW perspective. For LC foods, by contrast, craving increased under the LATER perspective. Early ERPs (occipital N1, 150-200 ms) were sensitive to food type but not to perspective. Late ERPs (late positive potential, LPP, 350-550 ms) were larger in the HC-LATER condition than in all other conditions, possibly indicating that a cognitive focus on negative long-term consequences induced negative arousal. This enhancement for HC-LATER attenuated to the level of the LC conditions during the later slow wave (550-3000 ms), but amplitude in the HC-NOW condition was larger than in all other conditions, possibly due to a delayed appetitive response. Across all conditions, LPP amplitudes were positively correlated with self-reported emotional eating. In sum, results reveal that regulation effects are secondary to an early attentional analysis of food type and dynamically evolve over time. Adopting a long-term perspective on eating might promote a healthier food choice across a range of food types.}, language = {en} } @article{EhrenfeldHerbortButz2013, author = {Ehrenfeld, Stephan and Herbort, Oliver and Butz, Martin V.}, title = {Modular neuron-based body estimation: maintaining consistency over different limbs, modalities, and frames of reference}, series = {Frontiers in Computational Neuroscience}, volume = {7}, journal = {Frontiers in Computational Neuroscience}, number = {148}, doi = {10.3389/fncom.2013.00148}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122253}, year = {2013}, abstract = {This paper addresses the question of how the brain maintains a probabilistic body state estimate over time from a modeling perspective. The neural Modular Modality Frame (nMMF) model simulates such a body state estimation process by continuously integrating redundant, multimodal body state information sources. The body state estimate itself is distributed over separate, but bidirectionally interacting modules. nMMF compares the incoming sensory and present body state information across the interacting modules and fuses the information sources accordingly. At the same time, nMMF enforces body state estimation consistency across the modules. nMMF is able to detect conflicting sensory information and to consequently decrease the influence of implausible sensor sources on the fly. In contrast to the previously published Modular Modality Frame (MMF) model, nMMF offers a biologically plausible neural implementation based on distributed, probabilistic population codes. Besides its neural plausibility, the neural encoding has the advantage of enabling (a) additional probabilistic information flow across the separate body state estimation modules and (b) the representation of arbitrary probability distributions of a body state. The results show that the neural estimates can detect and decrease the impact of false sensory information, can propagate conflicting information across modules, and can improve overall estimation accuracy due to additional module interactions. Even bodily illusions, such as the rubber hand illusion, can be simulated with nMMF. We conclude with an outlook on the potential of modeling human data and of invoking goal-directed behavioral control.}, language = {en} } @article{Meule2014, author = {Meule, Adrian}, title = {Are certain foods addictive?}, series = {Frontiers in Psychiatry}, volume = {5}, journal = {Frontiers in Psychiatry}, number = {38}, issn = {1664-0640}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120257}, year = {2014}, abstract = {A commentary on Lifestyle medicine: the importance of firmgrounding on evidence by Rippe JM. Am J Lifestyle Med (2014) doi:10.1177/ 1559827613520527}, language = {en} } @article{SollfrankHartGoodselletal.2015, author = {Sollfrank, Teresa and Hart, Daniel and Goodsell, Rachel and Foster, Jonathan and Tan, Tele}, title = {3D visualization of movements can amplify motor cortex activation during subsequent motor imagery}, series = {Frontiers in Human Neuroscience}, volume = {9}, journal = {Frontiers in Human Neuroscience}, number = {463}, doi = {10.3389/fnhum.2015.00463}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126058}, year = {2015}, abstract = {A repetitive movement practice by motor imagery (MI) can influence motor cortical excitability in the electroencephalogram (EEG). This study investigated if a realistic visualization in 3D of upper and lower limb movements can amplify motor related potentials during subsequent MI. We hypothesized that a richer sensory visualization might be more effective during instrumental conditioning, resulting in a more pronounced event related desynchronization (ERD) of the upper alpha band (10-12 Hz) over the sensorimotor cortices thereby potentially improving MI based brain-computer interface (BCI) protocols for motor rehabilitation. The results show a strong increase of the characteristic patterns of ERD of the upper alpha band components for left and right limb MI present over the sensorimotor areas in both visualization conditions. Overall, significant differences were observed as a function of visualization modality (VM; 2D vs. 3D). The largest upper alpha band power decrease was obtained during MI after a 3-dimensional visualization. In total in 12 out of 20 tasks the end-user of the 3D visualization group showed an enhanced upper alpha ERD relative to 2D VM group, with statistical significance in nine tasks.With a realistic visualization of the limb movements, we tried to increase motor cortex activation during subsequent MI. The feedback and the feedback environment should be inherently motivating and relevant for the learner and should have an appeal of novelty, real-world relevance or aesthetic value (Ryan and Deci, 2000; Merrill, 2007). Realistic visual feedback, consistent with the participant's MI, might be helpful for accomplishing successful MI and the use of such feedback may assist in making BCI a more natural interface for MI based BCI rehabilitation.}, language = {en} } @article{KoernerTopolinskiStrack2015, author = {K{\"o}rner, Anita and Topolinski, Sascha and Strack, Fritz}, title = {Routes to Embodiment}, series = {Frontiers of Psychology}, volume = {9}, journal = {Frontiers of Psychology}, number = {940}, doi = {10.3389/fpsyg.2015.00940}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125960}, year = {2015}, abstract = {Research on embodiment is rich in impressive demonstrations but somewhat poor in comprehensive explanations. Although some moderators and driving mechanisms have been identified, a comprehensive conceptual account of how bodily states or dynamics influence behavior is still missing. Here, we attempt to integrate current knowledge by describing three basic psychological mechanisms: direct state induction, which influences how humans feel or process information, unmediated by any other cognitive mechanism; modal priming, which changes the accessibility of concepts associated with a bodily state; sensorimotor simulation, which affects the ease with which congruent and incongruent actions are performed. We argue that the joint impact of these mechanisms can account for most existing embodiment effects. Additionally, we summarize empirical tests for distinguishing these mechanisms and suggest a guideline for future research about the mechanisms underlying embodiment effects.}, language = {en} } @phdthesis{Holz2015, author = {Holz, Elisa Mira}, title = {Systematic evaluation of non-invasive brain-computer interfaces as assistive devices for persons with severe motor impairment based on a user-centred approach - in controlled settings and independent use}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126334}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Brain-computer interfaces (BCIs) are devices that translate signals from the brain into control commands for applications. Within the last twenty years, BCI applications have been developed for communication, environmental control, entertainment, and substitution of motor functions. Since BCIs provide muscle independent communication and control of the environment by circumventing motor pathways, they are considered as assistive technologies for persons with neurological and neurodegenerative diseases leading to motor paralysis, such as amyotrophic lateral sclerosis (ALS), muscular dystrophy, spinal muscular atrophy and stroke (K{\"u}bler, Kotchoubey, Kaiser, Wolpaw, \& Birbaumer, 2001). Although most researcher mention persons with severe motor impairment as target group for their BCI systems, most studies include healthy participants and studies including potential BCI end-users are sparse. Thus, there is a substantial lack of studies that investigate whether results obtained in healthy participants can be transferred to patients with neurodegenerative diseases. This clearly shows that BCI research faces a translational gap between intense BCI research and bringing BCI applications to end-users outside the lab (K{\"u}bler, Mattia, Rupp, \& Tangermann, 2013). Translational studies are needed that investigate whether BCIs can be successfully used by severely disabled end-users and whether those end-users would accept BCIs as assistive devices. Another obvious discrepancy exists between a plethora of short-term studies and a sparse number of long-term studies. BCI research thus also faces a reliability gap (K{\"u}bler, Mattia, et al., 2013). Most studies present only one BCI session, however the few studies that include several testing sessions indicate high inter- and intra-individual variance in the end-users' performance due to non-stationarity of signals. Long-term studies, however, are needed to demonstrate whether a BCI can be reliably used as assistive device over a longer period of time in the daily-life of a person. Therefore there is also a great need for reliability studies. The purpose of the present thesis was to address these research gaps and to bring BCIs closer to end-users in need, especially into their daily-lives, following a user-centred design (UCD). The UCD was suggested as theoretical framework for bringing BCIs to end-users by K{\"u}bler and colleagues (K{\"u}bler et al., 2014; Zickler et al., 2011). This approach aims at the close and iterative interaction between BCI developers and end-users with the final goal to develop BCI systems that are accepted as assistive devices by end-users. The UCD focuses on usability, that is, how well a BCI technology matches the purpose and meets the needs and requirements of the targeted end-users and was standardized with the ISO 9241-210. Within the UCD framework, usability of a device can be defined with regard to its effectiveness, efficiency and satisfaction. These aspects were operationalized by K{\"u}bler and colleagues to evaluate BCI-controlled applications. As suggested by Vaughan and colleagues, the number of BCI sessions, the total usage duration and the impact of the BCI on the life of the person can be considered as indicators of usefulness of the BCI in long-term daily-life use (Vaughan, Sellers, \& Wolpaw, 2012). These definitions and metrics for usability and usefulness were applied for evaluating BCI applications as assistive devices in controlled settings and independent use. Three different BCI applications were tested and evaluated by in total N=10 end-users: In study 1 a motor-imagery (MI) based BCI for gaming was tested by four end-users with severe motor impairment. In study 2, a hybrid P300 event-related (ERP) based BCI for communication was tested by four severely motor restricted end-users with severe motor impairment. Study 1 and 2 are short-term studies conducted in a controlled-setting. In study 3 a P300-ERP BCI for creative expression was installed for long-term independent use at the homes of two end-users in the locked-in state. Both end-users are artists who had gradually lost the ability to paint after being diagnosed with ALS. Results reveal that BCI controlled devices are accepted as assistive devices. Main obstacles for daily-life use were the not very aesthetic design of the EEG-cap and electrodes (cap is eye-catching and looks medical), low comfort (cables disturb, immobility, electrodes press against head if lying on a head cushion), complicated and time-consuming adjustment, low efficiency and low effectiveness, and not very high reliability (many influencing factors). While effectiveness and efficiency in the MI based BCI were lower compared to applications using the P300-ERP as input channel, the MI controlled gaming application was nevertheless better accepted by the end-users and end-users would rather like to use it compared to the communication applications. Thus, malfunctioning and errors, low speed, and the EEG cap are rather tolerated in gaming applications, compared to communication devices. Since communication is essential for daily-life, it has to be fast and reliable. BCIs for communication, at the current state of the art, are not considered competitive with other assistive devices, if other devices, such as eye-gaze, are still an option. However BCIs might be an option when controlling an application for entertainment in daily-life, if communication is still available. Results demonstrate that BCI is adopted in daily-life if it matches the end-users needs and requirements. Brain Painting serves as best representative, as it matches the artists' need for creative expression. Caveats such as uncomfortable cap, dependence on others for set-up, and experienced low control are tolerated and do not prevent BCI use on a daily basis. Also end-users in real need of means for communication, such as persons in the locked-in state with unreliable eye-movement or no means for independent communication, do accept obstacles of the BCI, as it is the last or only solution to communicate or control devices. Thus, these aspects are "no real obstacles" but rather "challenges" that do not prevent end-users to use the BCI in their daily-lives. For instance, one end-user, who uses a BCI in her daily-life, stated: "I don't care about aesthetic design of EEG cap and electrodes nor amplifier". Thus, the question is not which system is superior to the other, but which system is best for an individual user with specific symptoms, needs, requirements, existing assistive solutions, support by caregivers/family etc.; it is thereby a question of indication. These factors seem to be better "predictors" for adoption of a BCI in daily-life, than common usability criterions such as effectiveness or efficiency. The face valid measures of daily-life demonstrate that BCI-controlled applications can be used in daily-life for more than 3 years, with high satisfaction for the end-users, without experts being present and despite a decrease in the amplitude of the P300 signal. Brain Painting re-enabled both artists to be creatively active in their home environment and thus improved their feelings of happiness, usefulness, self-esteem, well-being, and consequently quality of life and supports social inclusion. This thesis suggests that BCIs are valuable tools for people in the locked-in state.}, subject = {Gehirn-Computer-Schnittstelle}, language = {en} }