@phdthesis{Andermann2007, author = {Andermann, Paul}, title = {Evaluierung der Intra- und Interobserver-Variabilit{\"a}t bei der 2D-Ultraschall-Schilddr{\"u}senvolumetrie an einem Schilddr{\"u}senphantom - Vergleich zu 3D-Ultraschall-Referenzmessungen an gesunden Probanden}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-23434}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Mehrere Autoren haben schon die Intra- und Interobserver-Variabilit{\"a}t bei der Bestimmung des Schilddr{\"u}senvolumens und knotiger Herdbefunde mit Hilfe des zweidimensionalen (2D) Ultraschalls evaluiert. Dar{\"u}ber hinaus wurde {\"u}ber Interobserver-Korrelationen f{\"u}r Schilddr{\"u}senvolumenmessungen berichtet. Es gibt jedoch keine prospektive verblindete Studie, die die Intra- bzw. Interobserver-Variabilit{\"a}t bei der Volumenbestimmung der gesamten Schilddr{\"u}se an gesunden Probanden bzw. einzelner Knoten unterschiedlicher Echogenit{\"a}t an einem Phantom untersucht hat. Die Ergebnisse der Einzelstudien sollen hier vorgestellt und - soweit m{\"o}glich - miteinander verglichen werden. Im Rahmen einer quantitativen Studie mit dem hier pr{\"a}sentierten Schilddr{\"u}senphantom soll die Intra- und Interobserver-Variabilit{\"a}t bei der 2D-Ultraschallvolumetrie einzelner Knoten unterschiedlicher Gr{\"o}ße und Echogenit{\"a}t und der Schilddr{\"u}senlappen evaluiert werden. Da Schilddr{\"u}senknoten wegen des geringeren Volumens und ihrer oft unscharfen Randkontur schwieriger zu entdecken und auszumessen sind als die Gesamtschilddr{\"u}se, soll untersucht werden, welche Gr{\"o}ßenordnungen des Messfehlers auftreten und in welcher Relation sie zueinander stehen. Außerdem soll der methodenimmanente Fehler quantifiziert und detektierbare Volumen{\"a}nderungen erfassbar gemacht werden. Bisher war in der Schilddr{\"u}sensonographie kein geeignetes Phantom verf{\"u}gbar, das kommerziell erh{\"a}ltlich ist und mit dem qualitativ unterschiedliche intrathyreoidale Herdbefunde untersucht werden k{\"o}nnen. Die vorliegende Studie an gesunden Probanden hatte das prim{\"a}re Ziel, die Frage nach der Quantifizierbarkeit von Unsicherheitsfaktoren in der Schilddr{\"u}senvolumetrie durch den konventionellen 2D-Ultraschall im Vergleich zu 3D-Referenzvolumina bei gesunden Erwachsenen m{\"o}glichst exakt zu beantworten und die Untersucherabh{\"a}ngigkeit der Methode zu demonstrieren. Damit soll die Genauigkeit (Richtigkeit und Pr{\"a}zision) der sonographischen Schilddr{\"u}sendiagnostik mathematisch erfasst und eine bessere Bewertungsgrundlage f{\"u}r die Frage nach der Reproduzierbarkeit von Ultraschall-Volumenbestimmungen der Schilddr{\"u}se und ihrer pathologischen Ver{\"a}nderungen geschaffen werden. Hierf{\"u}r wurden m{\"o}glichst aussagekr{\"a}ftige statistische Parameter wie die Intra- und Interobserver-Variabilit{\"a}t, der systematische und zuf{\"a}llige Fehler, der reine Fehler der Messmethode, minimale, sicher detektierbare Volumen{\"a}nderungen und im Rahmen einer multivariaten Reliabilit{\"a}tsanalyse die Reliabilit{\"a}tskoeffizienten untersucht. Ein weiteres Ziel dieser Studie bestand darin, die Reliabilit{\"a}t der in der klinischen Routine benutzten Ellipsoidformel zur Berechnung des Schilddr{\"u}senvolumens zu {\"u}berpr{\"u}fen.}, language = {de} } @phdthesis{Vershenya2007, author = {Vershenya, Stanislav}, title = {T-cell receptor assay and reticulocyte-micronuclei assay as biological dosimeters for ionizing radiation in humans}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-28885}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {In radiation accidents biological methods are used in dosimetry, if the radiation dose could not be measured by physical methods. The knowledge of individual dose is a prerequisite for planning a medical treatment and for health risk evaluations. In the present work two biodosimetrical assays were calibrated in young patients who were treated with radioiodine for thyroid cancer. Patients were from Belarus. They suffered from radiation induced thyroid cancer as a consequence of the Chernobyl reactor accident. In radioiodine therapy (RIT) bone marrow and lymphatic organs are exposed to ionizing radiation at doses of 0.1 to 0.75 Sv within about 2 days. Since several RIT have to be applied with interval between each of them from 6 months up to approximately 1 year, total dose can be up to 2 Sv within 2 to 3 years. The dose for thyroid tissue is approximately 1000 times higher. The dose-response relationship was measured by the T-cell receptor test (TCR test) in T4 lymphocytes with and without in vitro incubation or by the micronucleus assay in transferrin receptor positive reticulocytes (MN-Tf-Ret test). In all these assays, the frequency of radiation-induced mutants of blood cells is measured using flow cytometry. The TCR test is a cumulative biodosimeter, which measures the total radiation dose within the last 5 to 10 years, whereas the result of the MN-Tf-Ret test reflects the radiation dose of approximately 24 hours interval. It takes 8 hours and 3 days to perform TCR and MN-Tf-Ret tests respectively. Calibration curves based on radioiodine treated patients can be used for dose estimation in humans, if the radiation conditions correspond to those in RIT. This limits their applicability to low dose-rate \&\#946;- and \&\#947;-irradiation and to doses per session not higher than about 0.5 Sv. If higher doses or dose-rates as well as the other types of ionizing radiation are involved, calibration curves in animals are indispensable. In the case MN-Tf-Ret test mouse models are established and may be used. The TCR assay was performed in 72 thyroid cancer patients aged between 14 and 25. T-cell mutant frequency (Mf) reaches its maximum only after half a year following the RIT. Then it declines exponentially. This decline could be described by the 3 parameter single exponential decay function. Based on this equation, the radiation dose could be calculated when the Mf and the time interval since exposure are known. Furthermore, the experimentally measured Mf value, which significantly exceeds the corresponding calculated Mf value would indicate an individual with higher radiosensitivity. However, among our patients there were none. The reticulocytes micronuclei test (MN-Tf-Ret) was performed in 46 radioiodine treated patients. When measuring the MN frequency (f(MN-Tf-Ret)) the measured cell fraction should be limited only to the youngest cohort of reticulocytes, because all the micronucleated erythrocytes are quickly removed from the peripheral blood by spleen. Thus, the MN test was performed only in CD71 positive (having transferring receptor) reticulocytes. These reticulocytes just entered the peripheral blood flow from red marrow. The MN frequency was measured before the therapy and then every day after the irradiation until day 7. MN frequency curve has typical shape with latent period for days 0 to 3. Then there is a sharp increase in MN frequency which lasts for 24 hours and could start between days 3 and 4. In the following days the MN frequency is dropping to its base level that equals the one before the treatment. The decay of MN frequency is depending on the half-life of radioiodine in the patient organism. If the half-life is low, then the increased f(MN-Tf-Ret) lasts shorter and vice versa. It was shown that the MN frequency curve could be described by the model where all the micronuclei arise only through the last mitosis of erythroblasts in the red marrow and the MN frequency is proportional to the radiation dose in the last cell cycle. The shape of this curve depends on the cell kinetics of erythropoiesis on one side and the exponential decay of radioiodine activity on the other. To the best of our knowledge, the MN-Tf-Ret test was applied in the present study for the first time in biological dosimetry.}, subject = {T-Lymphozyten-Rezeptor}, language = {en} }