@article{TraubGrondeyGassenmaieretal.2022, author = {Traub, Jan and Grondey, Katja and Gassenmaier, Tobias and Schmitt, Dominik and Fette, Georg and Frantz, Stefan and Boivin-Jahns, Val{\´e}rie and Jahns, Roland and St{\"o}rk, Stefan and Stoll, Guido and Reiter, Theresa and Hofmann, Ulrich and Weber, Martin S. and Frey, Anna}, title = {Sustained increase in serum glial fibrillary acidic protein after first ST-elevation myocardial infarction}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {18}, issn = {1422-0067}, doi = {10.3390/ijms231810304}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-288261}, year = {2022}, abstract = {Acute ischemic cardiac injury predisposes one to cognitive impairment, dementia, and depression. Pathophysiologically, recent positron emission tomography data suggest astroglial activation after experimental myocardial infarction (MI). We analyzed peripheral surrogate markers of glial (and neuronal) damage serially within 12 months after the first ST-elevation MI (STEMI). Serum levels of glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) were quantified using ultra-sensitive molecular immunoassays. Sufficient biomaterial was available from 45 STEMI patients (aged 28 to 78 years, median 56 years, 11\% female). The median (quartiles) of GFAP was 63.8 (47.0, 89.9) pg/mL and of NfL 10.6 (7.2, 14.8) pg/mL at study entry 0-4 days after STEMI. GFAP after STEMI increased in the first 3 months, with a median change of +7.8 (0.4, 19.4) pg/mL (p = 0.007). It remained elevated without further relevant increases after 6 months (+11.7 (0.6, 23.5) pg/mL; p = 0.015), and 12 months (+10.3 (1.5, 22.7) pg/mL; p = 0.010) compared to the baseline. Larger relative infarction size was associated with a higher increase in GFAP (ρ = 0.41; p = 0.009). In contrast, NfL remained unaltered in the course of one year. Our findings support the idea of central nervous system involvement after MI, with GFAP as a potential peripheral biomarker of chronic glial damage as one pathophysiologic pathway.}, language = {en} } @article{HaarmannZimmermannBieberetal.2022, author = {Haarmann, Axel and Zimmermann, Lena and Bieber, Michael and Silwedel, Christine and Stoll, Guido and Schuhmann, Michael K.}, title = {Regulation and release of vasoactive endoglin by brain endothelium in response to hypoxia/reoxygenation in stroke}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {13}, issn = {1422-0067}, doi = {10.3390/ijms23137085}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284361}, year = {2022}, abstract = {In large vessel occlusion stroke, recanalization to restore cerebral perfusion is essential but not necessarily sufficient for a favorable outcome. Paradoxically, in some patients, reperfusion carries the risk of increased tissue damage and cerebral hemorrhage. Experimental and clinical data suggest that endothelial cells, representing the interface for detrimental platelet and leukocyte responses, likely play a crucial role in the phenomenon referred to as ischemia/reperfusion (I/R)-injury, but the mechanisms are unknown. We aimed to determine the role of endoglin in cerebral I/R-injury; endoglin is a membrane-bound protein abundantly expressed by endothelial cells that has previously been shown to be involved in the maintenance of vascular homeostasis. We investigated the expression of membranous endoglin (using Western blotting and RT-PCR) and the generation of soluble endoglin (using an enzyme-linked immunosorbent assay of cell culture supernatants) after hypoxia and subsequent reoxygenation in human non-immortalized brain endothelial cells. To validate these in vitro data, we additionally examined endoglin expression in an intraluminal monofilament model of permanent and transient middle cerebral artery occlusion in mice. Subsequently, the effects of recombinant human soluble endoglin were assessed by label-free impedance-based measurement of endothelial monolayer integrity (using the xCELLigence DP system) and immunocytochemistry. Endoglin expression is highly inducible by hypoxia in human brain endothelial monolayers in vitro, and subsequent reoxygenation induced its shedding. These findings were corroborated in mice during MCAO; an upregulation of endoglin was displayed in the infarcted hemispheres under occlusion, whereas endoglin expression was significantly diminished after transient MCAO, which is indicative of shedding. Of note is the finding that soluble endoglin induced an inflammatory phenotype in endothelial monolayers. The treatment of HBMEC with endoglin resulted in a decrease in transendothelial resistance and the downregulation of VE-cadherin. Our data establish a novel mechanism in which hypoxia triggers the initial endothelial upregulation of endoglin and subsequent reoxygenation triggers its release as a vasoactive mediator that, when rinsed into adjacent vascular beds after recanalization, can contribute to cerebral reperfusion injury.}, language = {en} } @article{SpitzelWagnerBreyeretal.2022, author = {Spitzel, Marlene and Wagner, Elise and Breyer, Maximilian and Henniger, Dorothea and Bayin, Mehtap and Hofmann, Lukas and Mauceri, Daniela and Sommer, Claudia and {\"U}{\c{c}}eyler, Nurcan}, title = {Dysregulation of immune response mediators and pain-related ion channels is associated with pain-like behavior in the GLA KO mouse model of Fabry disease}, series = {Cells}, volume = {11}, journal = {Cells}, number = {11}, issn = {2073-4409}, doi = {10.3390/cells11111730}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-275186}, year = {2022}, abstract = {Fabry disease (FD) is a rare life-threatening disorder caused by deficiency of the alpha-galactosidase A (GLA) enzyme with a characteristic pain phenotype. Impaired GLA production or function leads to the accumulation of the cell membrane compound globotriaosylceramide (Gb3) in the neurons of the dorsal root ganglia (DRG) of FD patients. Applying immunohistochemistry (IHC) and quantitative real-time polymerase chain reaction (qRT PCR) analysis on DRG tissue of the GLA knockout (KO) mouse model of FD, we address the question of how Gb3 accumulation may contribute to FD pain and focus on the immune system and pain-associated ion channel gene expression. We show a higher Gb3 load in the DRG of young (<6 months) (p < 0.01) and old (≥12 months) (p < 0.001) GLA KO mice compared to old wildtype (WT) littermates, and an overall suppressed immune response in the DRG of old GLA KO mice, represented by a reduced number of CD206\(^+\) macrophages (p < 0.01) and lower gene expression levels of the inflammation-associated targets interleukin(IL)1b (p < 0.05), IL10 (p < 0.001), glial fibrillary acidic protein (GFAP) (p < 0.05), and leucine rich alpha-2-glycoprotein 1 (LRG1) (p < 0.01) in the DRG of old GLA KO mice compared to old WT. Dysregulation of immune-related genes may be linked to lower gene expression levels of the pain-associated ion channels calcium-activated potassium channel 3.1 (KCa3.1) and transient receptor potential ankyrin 1 channel (TRPA1). Ion channel expression might further be disturbed by impaired sphingolipid recruitment mediated via the lipid raft marker flotillin-1 (FLOT1). This impairment is represented by an increased number of FLOT1\(^+\) DRG neurons with a membranous expression pattern in old GLA KO mice compared to young GLA KO, young WT, and old WT mice (p < 0.001 each). Further, we provide evidence for aberrant behavior of GLA KO mice, which might be linked to dysregulated ion channel gene expression levels and disturbed FLOT1 distribution patterns. Behavioral testing revealed mechanical hypersensitivity in young (p < 0.01) and old (p < 0.001) GLA KO mice compared to WT, heat hypersensitivity in young GLA KO mice (p < 0.001) compared to WT, age-dependent heat hyposensitivity in old GLA KO mice (p < 0.001) compared to young GLA KO mice, and cold hyposensitivity in young (p < 0.001) and old (p < 0.001) GLA KO mice compared to WT, which well reflects the clinical phenotype observed in FD patients.}, language = {en} } @article{SchulteBlum2022, author = {Schulte, Annemarie and Blum, Robert}, title = {Shaped by leaky ER: Homeostatic Ca\(^{2+}\) fluxes}, series = {Frontiers in Physiology}, volume = {13}, journal = {Frontiers in Physiology}, issn = {1664-042X}, doi = {10.3389/fphys.2022.972104}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287102}, year = {2022}, abstract = {At any moment in time, cells coordinate and balance their calcium ion (Ca\(^{2+}\)) fluxes. The term 'Ca\(^{2+}\) homeostasis' suggests that balancing resting Ca2+ levels is a rather static process. However, direct ER Ca\(^{2+}\) imaging shows that resting Ca\(^{2+}\) levels are maintained by surprisingly dynamic Ca\(^{2+}\) fluxes between the ER Ca\(^{2+}\) store, the cytosol, and the extracellular space. The data show that the ER Ca\(^{2+}\) leak, continuously fed by the high-energy consuming SERCA, is a fundamental driver of resting Ca\(^{2+}\) dynamics. Based on simplistic Ca\(^{2+}\) toolkit models, we discuss how the ER Ca\(^{2+}\) leak could contribute to evolutionarily conserved Ca\(^{2+}\) phenomena such as Ca\(^{2+}\) entry, ER Ca\(^{2+}\) release, and Ca\(^{2+}\) oscillations.}, language = {en} } @phdthesis{Yuan2023, author = {Yuan, Xidi}, title = {Aging and inflammation in the peripheral nervous system}, doi = {10.25972/OPUS-23737}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-237378}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Aging is known to be a risk factor for structural abnormalities and functional decline in the nervous system. Characterizing age-related changes is important to identify putative pathways to overcome deleterious effects and improve life quality for the elderly. In this study, the peripheral nervous system of 24-month-old aged C57BL/6 mice has been investigated and compared to 12-month-old adult mice. Aged mice showed pathological alterations in their peripheral nerves similar to nerve biopsies from elderly human individuals, with nerve fibers showing demyelination and axonal damage. Such changes were lacking in nerves of adult 12-month-old mice and adult, non-aged humans. Moreover, neuromuscular junctions of 24-month-old mice showed increased denervation compared to adult mice. These alterations were accompanied by elevated numbers of macrophages in the peripheral nerves of aged mice. The neuroinflammatory conditions were associated with impaired myelin integrity and with a decline of nerve conduction properties and muscle strength in aged mice. To determine the pathological impact of macrophages in the aging mice, macrophage depletion was performed in mice by oral administration of CSF-1R specific kinase (c-FMS) inhibitor PLX5622 (300 mg/kg body weight), which reduced the number of macrophages in the peripheral nerves by 70\%. The treated mice showed attenuated demyelination, less muscle denervation and preserved muscle strength. This indicates that macrophage-driven inflammation in the peripheral nerves is partially responsible for the age-related neuropathy in mice. Based on previous observations that systemic inflammation can accelerate disease progression in mouse models of neurodegenerative diseases, it was hypothesized that systemic inflammation can exacerbate the peripheral neuropathy found in aged mice. To investigate this hypothesis, aged C57BL/6 mice were intraperitoneally injected with a single dose of lipopolysaccharide (LPS; 500 μg/kg body weight) to induce systemic inflammation by mimicking bacterial infection, mostly via activation of Toll-like receptors (TLRs). Altered endoneurial macrophage activation, highlighted by Trem2 downregulation, was found in LPS injected aged mice one month after injection. This was accompanied by a so far rarely observed form of axonal perturbation, i.e., the occurrence of "dark axons" characterized by a damaged cytoskeleton and an increased overall electron density of the axoplasm. At the same time, however, LPS injection reduced demyelination and muscle denervation in aged mice. Interestingly, TREM2 deficiency in aged mice led to similar changes to LPS injection. This suggests that LPS injection likely mitigates aging-related demyelination and muscle denervation via Trem2 downregulation. Taken together, this study reveals the role of macrophage-driven inflammation as a pathogenic mediator in age-related peripheral neuropathy, and that targeting macrophages might be an option to mitigate peripheral neuropathies in aging individuals. Furthermore, this study shows that systemic inflammation may be an ambivalent modifier of age-related nerve damage, leading to a distinct type of axonal perturbation, but in addition to functionally counteracting, dampened demyelination and muscle denervation. Translationally, it is plausible to assume that tipping the balance of macrophage polarization to one direction or the other may determine the functional outcome in the aging peripheral nervous system of the elderly.}, subject = {Maus}, language = {en} } @phdthesis{Wagenhaeuser2023, author = {Wagenh{\"a}user, Laura Maria}, title = {Die Auswirkungen der X-Inaktivierung auf den klinischen Ph{\"a}notyp bei Patientinnen mit Morbus Fabry}, doi = {10.25972/OPUS-31153}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311530}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {M. Fabry ist eine X-chromosomal vererbte Stoffwechselerkrankung. Die Mutation im α-Galactosidase A Gen f{\"u}hrt zur reduzierten Aktivit{\"a}t des Enzyms und zur Akkumulation der Stoffwechselprodukte im gesamten K{\"o}rper. Von der daraus resultierenden Multiorganerkrankung sind sowohl M{\"a}nner, als auch Frauen betroffen. Als Grund hierf{\"u}r steht eine verschobene X-Inaktivierung zur Diskussion. In der vorliegenden Arbeit wurden 104 Frauen rekrutiert und die X-Inaktivierungsmuster in Mundschleimhautepithel, Blut und Hautfibroblasten untersucht. Es wurden umfangreiche klinische und laborchemische Untersuchungen durchgef{\"u}hrt, sodass von jeder Patientin ein klinischer Ph{\"a}notyp vorlag, der mit Hilfe eines numerischen Scores klassifiziert wurde. Es zeigte sich, dass Blut ein leicht zu asservierendes Biomaterial mit einer hohen Pr{\"a}valenz an verschobenen X-Inaktivierungsmustern darstellt. Eine signifikante Korrelation mit dem klinischen Ph{\"a}notyp konnte in keinem der drei untersuchten Gewebe nachgewiesen werden.}, subject = {Fabry-Krankheit}, language = {de} } @article{PozziPalmisanoReichetal.2022, author = {Pozzi, Nicol{\´o} G. and Palmisano, Chiara and Reich, Martin M. and Capetian, Philip and Pacchetti, Claudio and Volkmann, Jens and Isaias, Ioannis U.}, title = {Troubleshooting gait disturbances in Parkinson's disease with deep brain stimulation}, series = {Frontiers in Human Neuroscience}, volume = {16}, journal = {Frontiers in Human Neuroscience}, issn = {1662-5161}, doi = {10.3389/fnhum.2022.806513}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-274007}, year = {2022}, abstract = {Deep brain stimulation (DBS) of the subthalamic nucleus or the globus pallidus is an established treatment for Parkinson's disease (PD) that yields a marked and lasting improvement of motor symptoms. Yet, DBS benefit on gait disturbances in PD is still debated and can be a source of dissatisfaction and poor quality of life. Gait disturbances in PD encompass a variety of clinical manifestations and rely on different pathophysiological bases. While gait disturbances arising years after DBS surgery can be related to disease progression, early impairment of gait may be secondary to treatable causes and benefits from DBS reprogramming. In this review, we tackle the issue of gait disturbances in PD patients with DBS by discussing their neurophysiological basis, providing a detailed clinical characterization, and proposing a pragmatic programming approach to support their management.}, language = {en} } @article{BellutRaimondiHaarmannetal.2022, author = {Bellut, Maximilian and Raimondi, Anthony T. and Haarmann, Axel and Zimmermann, Lena and Stoll, Guido and Schuhmann, Michael K.}, title = {NLRP3 inhibition reduces rt-PA induced endothelial dysfunction under ischemic conditions}, series = {Biomedicines}, volume = {10}, journal = {Biomedicines}, number = {4}, issn = {2227-9059}, doi = {10.3390/biomedicines10040762}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267261}, year = {2022}, abstract = {Thrombolysis with recombinant tissue plasminogen activator (rt-PA) is a mainstay of acute ischemic stroke treatment but is associated with bleeding complications, especially after prolonged large vessel occlusion. Recently, inhibition of the NLRP3 inflammasome led to preserved blood-brain barrier (BBB) integrity in experimental stroke in vivo. To further address the potential of NLRP3 inflammasome inhibition as adjunct stroke treatment we used immortalized brain derived endothelial cells (bEnd5) as an in vitro model of the BBB. We treated bEnd5 with rt-PA in combination with the NLRP3 specific inhibitor MCC950 or vehicle under normoxic as well as ischemic (OGD) conditions. We found that rt-PA exerted a cytotoxic effect on bEnd5 cells under OGD confirming that rt-PA is harmful to the BBB. This detrimental effect could be significantly reduced by MCC950 treatment. Moreover, under ischemic conditions, the Cell Index — a sensible indicator for a patent BBB — and the protein expression of Zonula occludens 1 stabilized after MCC950 treatment. At the same time, the extent of endothelial cell death and NLRP3 expression decreased. In conclusion, NLRP3 inhibition can protect the BBB from rt-PA-induced damage and thereby potentially increase the narrow time window for safe thrombolysis in stroke.}, language = {en} } @article{BieniussaKahramanSkornickaetal.2022, author = {Bieniussa, Linda and Kahraman, Baran and Skornicka, Johannes and Schulte, Annemarie and Voelker, Johannes and Jablonka, Sibylle and Hagen, Rudolf and Rak, Kristen}, title = {Pegylated insulin-like growth factor 1 attenuates hair cell loss and promotes presynaptic maintenance of medial olivocochlear cholinergic fibers in the cochlea of the progressive motor neuropathy mouse}, series = {Frontiers in Neurology}, volume = {13}, journal = {Frontiers in Neurology}, issn = {1664-2295}, doi = {10.3389/fneur.2022.885026}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-276669}, year = {2022}, abstract = {The progressive motor neuropathy (PMN) mouse is a model of an inherited motor neuropathy disease with progressive neurodegeneration. Axon degeneration associates with homozygous mutations of the TBCE gene encoding the tubulin chaperone E protein. TBCE is responsible for the correct dimerization of alpha and beta-tubulin. Strikingly, the PMN mouse also develops a progressive hearing loss after normal hearing onset, characterized by degeneration of the auditory nerve and outer hair cell (OHC) loss. However, the development of this neuronal and cochlear pathology is not fully understood yet. Previous studies with pegylated insulin-like growth factor 1 (peg-IGF-1) treatment in this mouse model have been shown to expand lifespan, weight, muscle strength, and motor coordination. Accordingly, peg-IGF-1 was evaluated for an otoprotective effect. We investigated the effect of peg-IGF-1 on the auditory system by treatment starting at postnatal day 15 (p15). Histological analysis revealed positive effects on OHC synapses of medial olivocochlear (MOC) neuronal fibers and a short-term attenuation of OHC loss. Peg-IGF-1 was able to conditionally restore the disorganization of OHC synapses and maintain the provision of cholinergic acetyltransferase in presynapses. To assess auditory function, frequency-specific auditory brainstem responses and distortion product otoacoustic emissions were recorded in animals on p21 and p28. However, despite the positive effect on MOC fibers and OHC, no restoration of hearing could be achieved. The present work demonstrates that the synaptic pathology of efferent MOC fibers in PMN mice represents a particular form of "efferent auditory neuropathy." Peg-IGF-1 showed an otoprotective effect by preventing the degeneration of OHCs and efferent synapses. However, enhanced efforts are needed to optimize the treatment to obtain detectable improvements in hearing performances.}, language = {en} } @article{GrotemeyerMcFlederWuetal.2022, author = {Grotemeyer, Alexander and McFleder, Rhonda Leah and Wu, Jingjing and Wischhusen, J{\"o}rg and Ip, Chi Wang}, title = {Neuroinflammation in Parkinson's disease - putative pathomechanisms and targets for disease-modification}, series = {Frontiers in Immunology}, volume = {13}, journal = {Frontiers in Immunology}, issn = {1664-3224}, doi = {10.3389/fimmu.2022.878771}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-274665}, year = {2022}, abstract = {Parkinson's disease (PD) is a progressive and debilitating chronic disease that affects more than six million people worldwide, with rising prevalence. The hallmarks of PD are motor deficits, the spreading of pathological α-synuclein clusters in the central nervous system, and neuroinflammatory processes. PD is treated symptomatically, as no causally-acting drug or procedure has been successfully established for clinical use. Various pathways contributing to dopaminergic neuron loss in PD have been investigated and described to interact with the innate and adaptive immune system. We discuss the possible contribution of interconnected pathways related to the immune response, focusing on the pathophysiology and neurodegeneration of PD. In addition, we provide an overview of clinical trials targeting neuroinflammation in PD.}, language = {en} }