@phdthesis{Ruedenauer2021, author = {R{\"u}denauer, Fabian}, title = {Nutrition facts of pollen: nutritional quality and how it affects reception and perception in bees}, doi = {10.25972/OPUS-21254}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212548}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Nutrients belong to the key elements enabling life and influencing an organism's fitness. The intake of nutrients in the right amounts and ratios can increase fitness; strong deviations from the optimal intake target can decrease fitness. Hence, the ability to assess the nutritional profile of food would benefit animals. To achieve this, they need the according nutrient receptors, the ability to interpret the receptor information via perceptive mechanisms, and the ability to adjust their foraging behavior accordingly. Additionally, eventually existing correlations between the nutrient groups and single nutrient compounds in food could help them to achieve this adjustment. A prominent interaction between food and consumer is the interaction between flowering plants (angiosperms) and animal pollinators. Usually both of the interacting partners benefit from this mutualistic interaction. Plants are pollinated while pollinators get a (most of the times) nutritional reward in form of nectar and/or pollen. As similar interactions between plants and animals seem to have existed even before the emergence of angiosperms, these interactions between insects and angiosperms very likely have co-evolved right from their evolutionary origin. Therefore, insect pollinators with the ability to assess the nutritional profile may have shaped the nutritional profile of plant species depending on them for their reproduction via selection pressure. In Chapter I of this thesis the pollen nutritional profile of many plant species was analyzed in the context of their phylogeny and their dependence on insect pollinators. In addition, correlations between the nutrients were investigated. While the impact of phylogeny on the pollen protein content was little, the mutual outcome of both of the studies included in this chapter is that protein content of pollen is mostly influenced by the plant's dependence on insect pollinators. Several correlations found between nutrients within and between the nutrient groups could additionally help the pollinators to assess the nutrient profile of pollen. An important prerequisite for this assessment would be that the pollinators are able to differentiate between pollen of different plant species. Therefore, in Chapter II it was investigated whether bees have this ability. Specifically, it was investigated whether honeybees are able to differentiate between pollen of two different, but closely related plant species and whether bumblebees prefer one out of three pollen mixes, when they were fed with only one of them as larvae. Honeybees indeed were able to differentiate between the pollen species and bumblebees preferred one of the pollen mixes to the pollen mix they were fed as larvae, possibly due to its nutritional content. Therefore, the basis for pollen nutrient assessment is given in bees. However, there also was a slight preference for the pollen fed as larvae compared to another non-preferred pollen mix, at least hinting at the retention of larval memory in adult bumblebees. Chapter III looks into nutrient perception of bumblebees more in detail. Here it was shown that they are principally able to perceive amino acids and differentiate between them as well as different concentrations of the same amino acid. However, they do not seem to be able to assess the amino acid content in pollen or do not focus on it, but instead seem to focus on fatty acids, for which they could not only perceive concentration differences, but also were able to differentiate between. These findings were supported by feeding experiments in which the bumblebees did not prefer any of the pollen diets containing less or more amino acids but preferred pollen with less fatty acids. In no choice feeding experiments, bumblebees receiving a diet with high fatty acid content accepted undereating other nutrients instead of overeating fat, leading to increased mortality and the inability to reproduce. Hence, the importance of fat in pollen needs to be looked into further. In conclusion, this thesis shows that the co-evolution of flowering plants and pollinating insects could be even more pronounced than thought before. Insects do not only pressure the plants to produce high quality nectar, but also pressure those plants depending on insect pollination to produce high quality pollen. The reason could be the insects' ability to receive and perceive certain nutrients, which enables them to forage selectively leading to a higher reproductive success of plants with a pollinator-suitable nutritional pollen profile.}, subject = {Pollen}, language = {en} } @article{ScheinerLimMeixneretal.2021, author = {Scheiner, Ricarda and Lim, Kayun and Meixner, Marina D. and Gabel, Martin S.}, title = {Comparing the appetitive learning performance of six European honeybee subspecies in a common apiary}, series = {Insects}, volume = {12}, journal = {Insects}, number = {9}, issn = {2075-4450}, doi = {10.3390/insects12090768}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245180}, year = {2021}, abstract = {The Western honeybee (Apis mellifera L.) is one of the most widespread insects with numerous subspecies in its native range. How far adaptation to local habitats has affected the cognitive skills of the different subspecies is an intriguing question that we investigate in this study. Naturally mated queens of the following five subspecies from different parts of Europe were transferred to Southern Germany: A. m. iberiensis from Portugal, A. m. mellifera from Belgium, A. m. macedonica from Greece, A. m. ligustica from Italy, and A. m. ruttneri from Malta. We also included the local subspecies A. m. carnica in our study. New colonies were built up in a common apiary where the respective queens were introduced. Worker offspring from the different subspecies were compared in classical olfactory learning performance using the proboscis extension response. Prior to conditioning, we measured individual sucrose responsiveness to investigate whether possible differences in learning performances were due to differential responsiveness to the sugar water reward. Most subspecies did not differ in their appetitive learning performance. However, foragers of the Iberian honeybee, A. m. iberiensis, performed significantly more poorly, despite having a similar sucrose responsiveness. We discuss possible causes for the poor performance of the Iberian honeybees, which may have been shaped by adaptation to the local habitat.}, language = {en} }