@article{SchenkKraussHolzschuh2018, author = {Schenk, Mariela and Krauss, Jochen and Holzschuh, Andrea}, title = {Desynchronizations in bee-plant interactions cause severe fitness losses in solitary bees}, series = {Journal of Animal Ecology}, volume = {87}, journal = {Journal of Animal Ecology}, number = {1}, doi = {10.1111/1365-2656.12694}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228533}, pages = {139-149}, year = {2018}, abstract = {1. Global warming can disrupt mutualistic interactions between solitary bees and plants when increasing temperature differentially changes the timing of interacting partners. One possible scenario is for insect phenology to advance more rapidly than plant phenology. 2. However, empirical evidence for fitness consequences due to temporal mismatches is lacking for pollinators and it remains unknown if bees have developed strategies to mitigate fitness losses following temporal mismatches. 3. We tested the effect of temporal mismatches on the fitness of three spring-emerging solitary bee species, including one pollen specialist. Using flight cages, we simulated (i) a perfect synchronization (from a bee perspective): bees and flowers occur simultaneously, (ii) a mismatch of 3days and (iii) a mismatch of 6days, with bees occurring earlier than flowers in the latter two cases. 4. A mismatch of 6days caused severe fitness losses in all three bee species, as few bees survived without flowers. Females showed strongly reduced activity and reproductive output compared to synchronized bees. Fitness consequences of a 3-day mismatch were species-specific. Both the early-spring species Osmia cornuta and the mid-spring species Osmia bicornis produced the same number of brood cells after a mismatch of 3days as under perfect synchronization. However, O.cornuta decreased the number of female offspring, whereas O.bicornis spread the brood cells over fewer nests, which may increase offspring mortality, e.g. due to parasitoids. The late-spring specialist Osmia brevicornis produced fewer brood cells even after a mismatch of 3days. Additionally, our results suggest that fitness losses after temporal mismatches are higher during warm than cold springs, as the naturally occurring temperature variability revealed that warm temperatures during starvation decreased the survival rate of O.bicornis. 5. We conclude that short temporal mismatches can cause clear fitness losses in solitary bees. Although our results suggest that bees have evolved species-specific strategies to mitigate fitness losses after temporal mismatches, the bees were not able to completely compensate for impacts on their fitness after temporal mismatches with their food resources.}, subject = {pollination}, language = {en} } @article{ChristopherDUgelvigWiesenhoferetal.2018, author = {Christopher D., Pull and Ugelvig, Line V. and Wiesenhofer, Florian and Anna V., Grasse and Tragust, Simon and Schmitt, Thomas and Brown, Mark JF and Cremer, Sylvia}, title = {Destructive disinfection of infected brood prevents systemic disease spread in ant colonies}, series = {eLIFE}, volume = {7}, journal = {eLIFE}, doi = {10.7554/eLife.32073}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-223728}, pages = {e 32073, 1-29}, year = {2018}, abstract = {In social groups, infections have the potential to spread rapidly and cause disease outbreaks. Here, we show that in a social insect, the ant Lasius neglectus, the negative consequences of fungal infections (Metarhizium brunneum) can be mitigated by employing an efficient multicomponent behaviour, termed destructive disinfection, which prevents further spread of the disease through the colony. Ants specifically target infected pupae during the pathogens non-contagious incubation period, utilising chemical 'sickness cues' emitted by pupae. They then remove the pupal cocoon, perforate its cuticle and administer antimicrobial poison, which enters the body and prevents pathogen replication from the inside out. Like the immune system of a metazoan body that specifically targets and eliminates infected cells, ants destroy infected brood to stop the pathogen completing its lifecycle, thus protecting the rest of the colony. Hence, in an analogous fashion, the same principles of disease defence apply at different levels of biological organisation.}, language = {en} } @article{SchlichtingRiegerCusumanoetal.2018, author = {Schlichting, Matthias and Rieger, Dirk and Cusumano, Paola and Grebler, Rudi and Costa, Rodolfo and Mazzotta, Gabriella M. and Helfrich-F{\"o}rster, Charlotte}, title = {Cryptochrome interacts with actin and enhances eye-mediated light sensitivity of the circadian clock in Drosophila melanogaster}, series = {Frontiers in Molecular Neuroscience}, volume = {11}, journal = {Frontiers in Molecular Neuroscience}, number = {238}, doi = {10.3389/fnmol.2018.00238}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177086}, year = {2018}, abstract = {Cryptochromes (CRYs) are a class of flavoproteins that sense blue light. In animals, CRYs are expressed in the eyes and in the clock neurons that control sleep/wake cycles and are implied in the generation and/or entrainment of circadian rhythmicity. Moreover, CRYs are sensing magnetic fields in insects as well as in humans. Here, we show that in the fruit fly Drosophila melanogaster CRY plays a light-independent role as "assembling" protein in the rhabdomeres of the compound eyes. CRY interacts with actin and appears to increase light sensitivity of the eyes by keeping the "signalplex" of the phototransduction cascade close to the membrane. By this way, CRY also enhances light-responses of the circadian clock.}, language = {en} } @article{ZoltnerKrienitzFieldetal.2018, author = {Zoltner, Martin and Krienitz, Nina and Field, Mark C. and Kramer, Susanne}, title = {Comparative proteomics of the two T. brucei PABPs suggests that PABP2 controls bulk mRNA}, series = {PLoS Neglected Tropical Diseases}, volume = {12}, journal = {PLoS Neglected Tropical Diseases}, number = {7}, doi = {10.1371/journal.pntd.0006679}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177126}, pages = {e0006679}, year = {2018}, abstract = {Poly(A)-binding proteins (PABPs) regulate mRNA fate by controlling stability and translation through interactions with both the poly(A) tail and eIF4F complex. Many organisms have several paralogs of PABPs and eIF4F complex components and it is likely that different eIF4F/PABP complex combinations regulate distinct sets of mRNAs. Trypanosomes have five eIF4G paralogs, six of eIF4E and two PABPs, PABP1 and PABP2. Under starvation, polysomes dissociate and the majority of mRNAs, most translation initiation factors and PABP2 reversibly localise to starvation stress granules. To understand this more broadly we identified a protein interaction cohort for both T. brucei PABPs by cryo-mill/affinity purification-mass spectrometry. PABP1 very specifically interacts with the previously identified interactors eIF4E4 and eIF4G3 and few others. In contrast PABP2 is promiscuous, with a larger set of interactors including most translation initiation factors and most prominently eIF4G1, with its two partners TbG1-IP and TbG1-IP2. Only RBP23 was specific to PABP1, whilst 14 RNA-binding proteins were exclusively immunoprecipitated with PABP2. Significantly, PABP1 and associated proteins are largely excluded from starvation stress granules, but PABP2 and most interactors translocate to granules on starvation. We suggest that PABP1 regulates a small subpopulation of mainly small-sized mRNAs, as it interacts with a small and distinct set of proteins unable to enter the dominant pathway into starvation stress granules and localises preferentially to a subfraction of small polysomes. By contrast PABP2 likely regulates bulk mRNA translation, as it interacts with a wide range of proteins, enters stress granules and distributes over the full range of polysomes.}, language = {en} } @article{RasaNoraKrukleHenningetal.2018, author = {Rasa, Santa and Nora-Krukle, Zaiga and Henning, Nina and Eliassen, Eva and Shikova, Evelina and Harrer, Thomas and Scheibenbogen, Carmen and Murovska, Modra and Prusty, Bhupesh K.}, title = {Chronic viral infections in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)}, series = {Journal of Translational Medicine}, volume = {16}, journal = {Journal of Translational Medicine}, number = {268}, doi = {10.1186/s12967-018-1644-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224960}, pages = {1-25}, year = {2018}, abstract = {Background and main text: Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex and controversial clinical condition without having established causative factors. Increasing numbers of cases during past decade have created awareness among patients as well as healthcare professionals. Chronic viral infection as a cause of ME/CFS has long been debated. However, lack of large studies involving well-designed patient groups and validated experimental set ups have hindered our knowledge about this disease. Moreover, recent developments regarding molecular mechanism of pathogenesis of various infectious agents cast doubts over validity of several of the past studies. Conclusions: This review aims to compile all the studies done so far to investigate various viral agents that could be associated with ME/CFS. Furthermore, we suggest strategies to better design future studies on the role of viral infections in ME/CFS.}, language = {en} } @article{ReilingKrohneFriedrichetal.2018, author = {Reiling, Sarah J. and Krohne, Georg and Friedrich, Oliver and Geary, Timothy G. and Rohrbach, Petra}, title = {Chloroquine exposure triggers distinct cellular responses in sensitive versus resistant Plasmodium falciparum parasites}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {11137}, doi = {10.1038/s41598-018-29422-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225123}, pages = {1-11}, year = {2018}, abstract = {Chloroquine (CQ) treatment failure in Plasmodium falciparum parasites has been documented for decades, but the pharmacological explanation of this phenotype is not fully understood. Current concepts attribute CQ resistance to reduced accumulation of the drug at a given external CQ concentration ([CQ] ex) in resistant compared to sensitive parasites. The implication of this explanation is that the mechanisms of CQ-induced toxicity in resistant and sensitive strains are similar once lethal internal concentrations have been reached. To test this hypothesis, we investigated the mechanism of CQ-induced toxicity in CQ-sensitive (CQS) versus CQ-resistant (CQR) parasites by analyzing the time-course of cellular responses in these strains after exposure to varying [CQ] ex as determined in 72 h toxicity assays. Parasite killing was delayed in CQR parasites for up to 10 h compared to CQS parasites when exposed to equipotent [CQ] ex. In striking contrast, brief exposure (1 h) to lethal [CQ] ex in CQS but not CQR parasites caused the appearance of hitherto undescribed hemozoin (Hz)-containing compartments in the parasite cytosol. Hz-containing compartments were very rarely observed in CQR parasites even after CQ exposures sufficient to cause irreversible cell death. These findings challenge current concepts that CQ killing of malaria parasites is solely concentration-dependent, and instead suggest that CQS and CQR strains fundamentally differ in the consequences of CQ exposure.}, language = {en} } @phdthesis{Bargul2018, author = {Bargul, Joel Ltilitan}, title = {Characterization of motility and erythrocyte adherence as virulence factors in African trypanosomes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115053}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Pathogens causing African animal trypanosomiasis (AAT), the major livestock disease in sub-Saharan Africa, belong to the salivarian group of the African trypanosomes, which are transmitted by the bite of the tsetse fly (Glossina spec.). T. vivax, T. congolense and T. brucei brucei are major pathogens of cattle in particular, causing nagana, with dramatic socio-economic consequences for the affected regions. The parasites additionally have a huge reservoir of other livestock and wild animal hosts. T. brucei, the species which also includes the subspecies pathogenic to humans causing sleeping sickness, has been extensively studied as the cultivatable model trypanosome. But less is known about the other salivarian species, which are not routinely held in culture, if at all possible. A hallmark of trypanosomal lifestyle is the protozoan flagellates incessant motility, which enables them to populate an enormous range of habitats in very diverse hosts. We were now able to characterize, for the first time with high spatiotemporal resolution microscopy, the swimming behaviour and mechanism of the most relevant salivarian species isolated directly from blood. We show the influence of viscosity on the motility of bloodstream form (BSF) cells and simulate their movement between erythrocytes, giving a clear picture of how all analyzed species move under varying environmental conditions. We show that although the basic mechanism of flagellar motility applies to all analyzed species, there are clear morphological differences that produce different reactions to the physical environment. We could define specific conditions for highly increased swimming persistence and speed for compared to the behaviour in standard culture. These results have important implications for the parasites survival strategies in the host, e.g. regarding the capacity for antibody clearance. Although we show all species to effectively remove antibodies from the cell surface, T. congolense differed markedly in its motility behaviour, which gives rise to interesting questions about this species behaviour in the bloodstream. Most of the T. congolense parasites (and to a lesser extent T. vivax) adhere to sheep erythrocytes. Further in vitro studies showed that T. congolense and T. vivax adhered to rabbit, goat, pig and cattle erythrocytes- but binding behaviour was absent in murine blood. Notably, both T. brucei and T. evansi lacked adherence to all studied host erythrocytes. Generally, attachment to blood cells caused reduction of swimming velocities. Judging from its cell architecture, as well as the motility studies in higher media viscosity and in micropillar arrays, T. congolense is not adapted to swim at high speeds in the mammalian bloodstream. Low swimming speeds could allow these purely intravascular parasites to remain bound to the host erythrocytes.}, subject = {Motili{\"a}t}, language = {en} } @article{HennrichRomanovHornetal.2018, author = {Hennrich, Marco L. and Romanov, Natalie and Horn, Patrick and Jaeger, Samira and Eckstein, Volker and Steeples, Violetta and Ye, Fei and Ding, Ximing and Poisa-Beiro, Laura and Mang, Ching Lai and Lang, Benjamin and Boultwood, Jacqueline and Luft, Thomas and Zaugg, Judith B. and Pellagatti, Andrea and Bork, Peer and Aloy, Patrick and Gavin, Anne-Claude and Ho, Anthony D.}, title = {Cell-specific proteome analyses of human bone marrow reveal molecular features of age-dependent functional decline}, series = {Nature Communications}, volume = {9}, journal = {Nature Communications}, doi = {10.1038/s41467-018-06353-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-319877}, year = {2018}, abstract = {Diminishing potential to replace damaged tissues is a hallmark for ageing of somatic stem cells, but the mechanisms remain elusive. Here, we present proteome-wide atlases of age-associated alterations in human haematopoietic stem and progenitor cells (HPCs) and five other cell populations that constitute the bone marrow niche. For each, the abundance of a large fraction of the ~12,000 proteins identified is assessed in 59 human subjects from different ages. As the HPCs become older, pathways in central carbon metabolism exhibit features reminiscent of the Warburg effect, where glycolytic intermediates are rerouted towards anabolism. Simultaneously, altered abundance of early regulators of HPC differentiation reveals a reduced functionality and a bias towards myeloid differentiation. Ageing causes alterations in the bone marrow niche too, and diminishes the functionality of the pathways involved in HPC homing. The data represent a valuable resource for further analyses, and for validation of knowledge gained from animal models.}, language = {en} } @phdthesis{Halboth2018, author = {Halboth, Florian}, title = {Building behavior and nest climate control in leaf-cutting ants: How environmental cues affect the building responses of workers of \(Atta\) \(vollenweideri\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161701}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The present work investigates the influence of environmental stimuli on the building behavior of workers of the leaf-cutting ant Atta vollenweideri. It focuses on cues related to the airflow-driven ventilation of their giant underground nests, i.e., air movements and their direction, carbon dioxide concentrations and humidity levels of the nest air. First, it is shown that workers are able to use airflow and its direction as learned orientation cue by performing learning experiments with individual foragers using a classical conditioning paradigm. This ability is expected to allow workers to also navigate inside the nest tunnels using the prevailing airflow directions for orientation, for example during tasks related to nest construction and climate control. Furthermore, the influence of carbon dioxide on the digging behavior of workers is investigated. While elevated CO2 levels hardly affect the digging rate of the ants, workers prefer to excavate at locations with lower concentrations and avoid higher CO2 levels when given a choice. Under natural conditions, shifting their digging activity to soil layers containing lower carbon dioxide levels might help colonies to excavate new or to broaden existing nest openings, if the CO2 concentration in the underground rises. It is also shown that workers preferably transport excavated soil along tunnels containing high CO2 concentrations, when carbon dioxide levels in the underground are elevated as well. In addition, workers prefer to carry soil pellets along outflow tunnels instead of inflow tunnels, at least for high humidity levels of the air. The material transported along tunnels providing outflow of CO2-rich air might be used by workers for the construction of ventilation turrets on top of the nest mound, which is expected to promote the wind-induced ventilation and the removal of carbon dioxide from the underground. The climatic conditions inside the nest tunnels also influence the structural features of the turrets constructed by workers on top the nest. While airflow and humidity have no effect on turret structure, outflow of CO2-rich air from the nest causes workers to construct turrets with additional openings and increased aperture, potentially enhancing the airflow-driven gas exchanges within the nest. Finally, the effect of airflow and ventilation turrets on the gas exchanges in Atta vollenweideri nests is tested experimentally on a physical model of a small nest consisting of a single chamber and two nest tunnels. The carbon dioxide clearance rate from the underground was measured depending on both the presence of airflow in the nest and the structural features of the built turrets. Carbon dioxide is removed faster from the physical nest model when air moves through the nest, confirming the contribution of wind-induced flow inside the nest tunnels to the ventilation of Atta vollenweideri nests. In addition, turrets placed on top of one of the tunnel openings of the nest further enhance the CO2 clearance rate and the effect is positively correlated with turret aperture. Taken together, climatic variables like airflow, carbon dioxide and humidity levels strongly affect the building responses of Atta vollenweideri leaf-cutting ants. Workers use these environmental stimuli as orientation cue in the nest during tasks related to excavation, soil transport and turret construction. Although the effects of these building responses on the microclimatic conditions inside the nest remain elusive so far, the described behaviors are expected to allow ant colonies to restore and maintain a proper nest climate in the underground.}, subject = {Verhalten}, language = {en} } @article{GrimmHufnagelWobseretal.2018, author = {Grimm, Johannes and Hufnagel, Anita and Wobser, Marion and Borst, Andreas and Haferkamp, Sebastian and Houben, Roland and Meierjohann, Svenja}, title = {BRAF inhibition causes resilience of melanoma cell lines by inducing the secretion of FGF1}, series = {Oncogenesis}, volume = {7}, journal = {Oncogenesis}, number = {71}, doi = {10.1038/s41389-018-0082-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177261}, year = {2018}, abstract = {Approximately half of all melanoma patients harbour activating mutations in the serine/threonine kinase BRAF. This is the basis for one of the main treatment strategies for this tumor type, the targeted therapy with BRAF and MEK inhibitors. While the initial responsiveness to these drugs is high, resistance develops after several months, frequently at sites of the previously responding tumor. This indicates that tumor response is incomplete and that a certain tumor fraction survives even in drug-sensitive patients, e.g., in a therapy-induced senescence-like state. Here, we show in several melanoma cell lines that BRAF inhibition induces a secretome with stimulating effect on fibroblasts and naive melanoma cells. Several senescence-associated factors were found to be transcribed and secreted in response to BRAF or MEK inhibition, among them members of the fibroblast growth factor family. We identified the growth factor FGF1 as mediator of resilience towards BRAF inhibition, which limits the pro-apoptotic effects of the drug and activates fibroblasts to secrete HGF. FGF1 regulation was mediated by the PI3K pathway and by FRA1, a direct target gene of the MAPK pathway. When FGFR inhibitors were applied in parallel to BRAF inhibitors, resilience was broken, thus providing a rationale for combined therapeutical application.}, language = {en} }