@article{FoersterBeisserGrohmeetal.2012, author = {F{\"o}rster, Frank and Beisser, Daniela and Grohme, Markus A. and Liang, Chunguang and Mali, Brahim and Siegl, Alexander Matthias and Engelmann, Julia C. and Shkumatov, Alexander V. and Schokraie, Elham and M{\"u}ller, Tobias and Schn{\"o}lzer, Martina and Schill, Ralph O. and Frohme, Marcus and Dandekar, Thomas}, title = {Transcriptome analysis in tardigrade species reveals specific molecular pathways for stress adaptations}, series = {Bioinformatics and biology insights}, volume = {6}, journal = {Bioinformatics and biology insights}, doi = {10.4137/BBI.S9150}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123089}, pages = {69-96}, year = {2012}, abstract = {Tardigrades have unique stress-adaptations that allow them to survive extremes of cold, heat, radiation and vacuum. To study this, encoded protein clusters and pathways from an ongoing transcriptome study on the tardigrade \(Milnesium\) \(tardigradum\) were analyzed using bioinformatics tools and compared to expressed sequence tags (ESTs) from \(Hypsibius\) \(dujardini\), revealing major pathways involved in resistance against extreme environmental conditions. ESTs are available on the Tardigrade Workbench along with software and databank updates. Our analysis reveals that RNA stability motifs for \(M.\) \(tardigradum\) are different from typical motifs known from higher animals. \(M.\) \(tardigradum\) and \(H.\) \(dujardini\) protein clusters and conserved domains imply metabolic storage pathways for glycogen, glycolipids and specific secondary metabolism as well as stress response pathways (including heat shock proteins, bmh2, and specific repair pathways). Redox-, DNA-, stress- and protein protection pathways complement specific repair capabilities to achieve the strong robustness of \(M.\) \(tardigradum\). These pathways are partly conserved in other animals and their manipulation could boost stress adaptation even in human cells. However, the unique combination of resistance and repair pathways make tardigrades and \(M.\) \(tardigradum\) in particular so highly stress resistant.}, language = {en} } @article{SchokraieWarnkenHotzWagenblattetal.2012, author = {Schokraie, Elham and Warnken, Uwe and Hotz-Wagenblatt, Agnes and Grohme, Markus A. and Hengherr, Steffen and F{\"o}rster, Frank and Schill, Ralph O. and Frohme, Marcus and Dandekar, Thomas and Schn{\"o}lzer, Martina}, title = {Comparative proteome analysis of Milnesium tardigradum in early embryonic state versus adults in active and anhydrobiotic state}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {9}, doi = {10.1371/journal.pone.0045682}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134447}, pages = {e45682}, year = {2012}, abstract = {Tardigrades have fascinated researchers for more than 300 years because of their extraordinary capability to undergo cryptobiosis and survive extreme environmental conditions. However, the survival mechanisms of tardigrades are still poorly understood mainly due to the absence of detailed knowledge about the proteome and genome of these organisms. Our study was intended to provide a basis for the functional characterization of expressed proteins in different states of tardigrades. High-throughput, high-accuracy proteomics in combination with a newly developed tardigrade specific protein database resulted in the identification of more than 3000 proteins in three different states: early embryonic state and adult animals in active and anhydrobiotic state. This comprehensive proteome resource includes protein families such as chaperones, antioxidants, ribosomal proteins, cytoskeletal proteins, transporters, protein channels, nutrient reservoirs, and developmental proteins. A comparative analysis of protein families in the different states was performed by calculating the exponentially modified protein abundance index which classifies proteins in major and minor components. This is the first step to analyzing the proteins involved in early embryonic development, and furthermore proteins which might play an important role in the transition into the anhydrobiotic state.}, language = {en} } @article{JahnSchrammSchnoelzeretal.2012, author = {Jahn, Daniel and Schramm, Sabine and Schn{\"o}lzer, Martina and Heilmann, Clemens J. and de Koster, Chris G. and Sch{\"u}tz, Wolfgang and Benavente, Ricardo and Alsheimer, Manfred}, title = {A truncated lamin A in the Lmna\(^{-/-}\) mouse line: Implications for the understanding of laminopathies}, series = {Nucleus}, volume = {3}, journal = {Nucleus}, number = {5}, doi = {10.4161/nucl.21676}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127281}, pages = {463-474}, year = {2012}, abstract = {During recent years a number of severe clinical syndromes, collectively termed laminopathies, turned out to be caused by various, distinct mutations in the human LMNA gene. Arising from this, remarkable progress has been made to unravel the molecular pathophysiology underlying these disorders. A great benefit in this context was the generation of an A-type lamin deficient mouse line (Lmna\(^{-/-}\)) by Sullivan and others,1 which has become one of the most frequently used models in the field and provided profound insights to many different aspects of A-type lamin function. Here, we report the unexpected finding that these mice express a truncated Lmna gene product on both transcriptional and protein level. Combining different approaches including mass spectrometry, we precisely define this product as a C-terminally truncated lamin A mutant that lacks domains important for protein interactions and post-translational processing. Based on our findings we discuss implications for the interpretation of previous studies using Lmna\(^{-/-}\) mice and the concept of human laminopathies.}, language = {en} }