@article{NiewaldaVoellerEschbachetal.2011, author = {Niewalda, Thomas and V{\"o}ller, Thomas and Eschbach, Claire and Ehmer, Julia and Wen-Chuang, Chou and Timme, Marc and Fiala, Andr{\´e} and Gerber, Bertram}, title = {A Combined Perceptual, Physico-Chemical, and Imaging Approach to 'Odour-Distances' Suggests a Categorizing Function of the Drosophila Antennal Lobe}, series = {PLoS One}, volume = {6}, journal = {PLoS One}, number = {9}, doi = {10.1371/journal.pone.0024300}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133510}, pages = {e24300}, year = {2011}, abstract = {How do physico-chemical stimulus features, perception, and physiology relate? Given the multi-layered and parallel architecture of brains, the question specifically is where physiological activity patterns correspond to stimulus features and/or perception. Perceived distances between six odour pairs are defined behaviourally from four independent odour recognition tasks. We find that, in register with the physico-chemical distances of these odours, perceived distances for 3octanol and n-amylacetate are consistently smallest in all four tasks, while the other five odour pairs are about equally distinct. Optical imaging in the antennal lobe, using a calcium sensor transgenically expressed in only first-order sensory or only second-order olfactory projection neurons, reveals that 3-octanol and n-amylacetate are distinctly represented in sensory neurons, but appear merged in projection neurons. These results may suggest that within-antennal lobe processing funnels sensory signals into behaviourally meaningful categories, in register with the physico-chemical relatedness of the odours.}, language = {en} } @article{NiewaldaVoellerEschbachetal.2011, author = {Niewalda, Thomas and V{\"o}ller, Thomas and Eschbach, Claire and Ehmer, Julia and Chou, Wen-Chuang and Timme, Marc and Fiala, Andr{\´e} and Gerber, Bertram}, title = {A Combined Perceptual, Physico-Chemical, and ImagingApproach to 'Odour-Distances' Suggests a CategorizingFunction of the Drosophila Antennal Lobe}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-74769}, year = {2011}, abstract = {How do physico-chemical stimulus features, perception, and physiology relate? Given the multi-layered and parallel architecture of brains, the question specifically is where physiological activity patterns correspond to stimulus features and/ or perception. Perceived distances between six odour pairs are defined behaviourally from four independent odour recognition tasks. We find that, in register with the physico-chemical distances of these odours, perceived distances for 3-octanol and n-amylacetate are consistently smallest in all four tasks, while the other five odour pairs are about equally distinct. Optical imaging in the antennal lobe, using a calcium sensor transgenically expressed in only first-order sensory or only second-order olfactory projection neurons, reveals that 3-octanol and n-amylacetate are distinctly represented in sensory neurons, but appear merged in projection neurons. These results may suggest that within-antennal lobe processing funnels sensory signals into behaviourally meaningful categories, in register with the physico-chemical relatedness of the odours.}, subject = {Drosophila Antennal Lobe}, language = {en} } @article{SchrammFrauneNaumannetal.2011, author = {Schramm, Sabine and Fraune, Johanna and Naumann, Ronald and Hernandez-Hernandez, Abrahan and H{\"o}{\"o}g, Christer and Cooke, Howard J. and Alsheimer, Manfred and Benavente, Ricardo}, title = {A Novel Mouse Synaptonemal Complex Protein Is Essential for Loading of Central Element Proteins, Recombination, and Fertility}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68895}, year = {2011}, abstract = {The synaptonemal complex (SC) is a proteinaceous, meiosis-specific structure that is highly conserved in evolution. During meiosis, the SC mediates synapsis of homologous chromosomes. It is essential for proper recombination and segregation of homologous chromosomes, and therefore for genome haploidization. Mutations in human SC genes can cause infertility. In order to gain a better understanding of the process of SC assembly in a model system that would be relevant for humans, we are investigating meiosis in mice. Here, we report on a newly identified component of the murine SC, which we named SYCE3. SYCE3 is strongly conserved among mammals and localizes to the central element (CE) of the SC. By generating a Syce3 knockout mouse, we found that SYCE3 is required for fertility in both sexes. Loss of SYCE3 blocks synapsis initiation and results in meiotic arrest. In the absence of SYCE3, initiation of meiotic recombination appears to be normal, but its progression is severely impaired resulting in complete absence of MLH1 foci, which are presumed markers of crossovers in wild-type meiocytes. In the process of SC assembly, SYCE3 is required downstream of transverse filament protein SYCP1, but upstream of the other previously described CE-specific proteins. We conclude that SYCE3 enables chromosome loading of the other CE-specific proteins, which in turn would promote synapsis between homologous chromosomes.}, subject = {Maus}, language = {en} } @article{KatjaLopezTillichetal.2011, author = {Katja, Schulze and L{\´o}pez, Diana A. and Tillich, Ulrich M. and Frohme, Marcus}, title = {A simple viability analysis for unicellular cyanobacteria using a new autofluorescence assay, automated microscopy, and ImageJ}, series = {BMC Biotechnology}, volume = {11}, journal = {BMC Biotechnology}, number = {118}, doi = {10.1186/1472-6750-11-118}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137735}, year = {2011}, abstract = {Background Currently established methods to identify viable and non-viable cells of cyanobacteria are either time-consuming (eg. plating) or preparation-intensive (eg. fluorescent staining). In this paper we present a new and fast viability assay for unicellular cyanobacteria, which uses red chlorophyll fluorescence and an unspecific green autofluorescence for the differentiation of viable and non-viable cells without the need of sample preparation. Results The viability assay for unicellular cyanobacteria using red and green autofluorescence was established and validated for the model organism Synechocystis sp. PCC 6803. Both autofluorescence signals could be observed simultaneously allowing a direct classification of viable and non-viable cells. The results were confirmed by plating/colony count, absorption spectra and chlorophyll measurements. The use of an automated fluorescence microscope and a novel ImageJ based image analysis plugin allow a semi-automated analysis. Conclusions The new method simplifies the process of viability analysis and allows a quick and accurate analysis. Furthermore results indicate that a combination of the new assay with absorption spectra or chlorophyll concentration measurements allows the estimation of the vitality of cells.}, language = {en} } @article{EckhardtAndersMuranyietal.2011, author = {Eckhardt, Manon and Anders, Maria and Muranyi, Walter and Heilemann, Mike and Krijnse-Locker, Jacomine and M{\"u}ller, Barbara}, title = {A SNAP-Tagged Derivative of HIV-1-A Versatile Tool to Study Virus-Cell Interactions}, series = {PLoS ONE}, volume = {6}, journal = {PLoS ONE}, number = {7}, doi = {10.1371/journal.pone.0022007}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133534}, pages = {e22007}, year = {2011}, abstract = {Fluorescently labeled human immunodeficiency virus (HIV) derivatives, combined with the use of advanced fluorescence microscopy techniques, allow the direct visualization of dynamic events and individual steps in the viral life cycle. HIV proteins tagged with fluorescent proteins (FPs) have been successfully used for live-cell imaging analyses of HIV-cell interactions. However, FPs display limitations with respect to their physicochemical properties, and their maturation kinetics. Furthermore, several independent FP-tagged constructs have to be cloned and characterized in order to obtain spectral variations suitable for multi-color imaging setups. In contrast, the so-called SNAP-tag represents a genetically encoded non-fluorescent tag which mediates specific covalent coupling to fluorescent substrate molecules in a self-labeling reaction. Fusion of the SNAP-tag to the protein of interest allows specific labeling of the fusion protein with a variety of synthetic dyes, thereby offering enhanced flexibility for fluorescence imaging approaches. Here we describe the construction and characterization of the HIV derivative HIV(SNAP), which carries the SNAP-tag as an additional domain within the viral structural polyprotein Gag. Introduction of the tag close to the C-terminus of the matrix domain of Gag did not interfere with particle assembly, release or proteolytic virus maturation. The modified virions were infectious and could be propagated in tissue culture, albeit with reduced replication capacity. Insertion of the SNAP domain within Gag allowed specific staining of the viral polyprotein in the context of virus producing cells using a SNAP reactive dye as well as the visualization of individual virions and viral budding sites by stochastic optical reconstruction microscopy. Thus, HIV(SNAP) represents a versatile tool which expands the possibilities for the analysis of HIV-cell interactions using live cell imaging and sub-diffraction fluorescence microscopy.}, language = {en} } @article{ChipperfieldDythamHovestadt2011, author = {Chipperfield, Joseph D. and Dytham, Calvin and Hovestadt, Thomas}, title = {An Updated Algorithm for the Generation of Neutral Landscapes by Spectral Synthesis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68938}, year = {2011}, abstract = {Background: Patterns that arise from an ecological process can be driven as much from the landscape over which the process is run as it is by some intrinsic properties of the process itself. The disentanglement of these effects is aided if it possible to run models of the process over artificial landscapes with controllable spatial properties. A number of different methods for the generation of so-called 'neutral landscapes' have been developed to provide just such a tool. Of these methods, a particular class that simulate fractional Brownian motion have shown particular promise. The existing methods of simulating fractional Brownian motion suffer from a number of problems however: they are often not easily generalisable to an arbitrary number of dimensions and produce outputs that can exhibit some undesirable artefacts. Methodology: We describe here an updated algorithm for the generation of neutral landscapes by fractional Brownian motion that do not display such undesirable properties. Using Monte Carlo simulation we assess the anisotropic properties of landscapes generated using the new algorithm described in this paper and compare it against a popular benchmark algorithm. Conclusion/Significance: The results show that the existing algorithm creates landscapes with values strongly correlated in the diagonal direction and that the new algorithm presented here corrects this artefact. A number of extensions of the algorithm described here are also highlighted: we describe how the algorithm can be employed to generate landscapes that display different properties in different dimensions and how they can be combined with an environmental gradient to produce landscapes that combine environmental variation at the local and macro scales.}, subject = {Landschaft}, language = {en} } @article{StiebKelberWehneretal.2011, author = {Stieb, Sara Mae and Kelber, Christina and Wehner, R{\"u}diger and R{\"o}ssler, Wolfgang}, title = {Antennal-Lobe Organization in Desert Ants of the Genus Cataglyphis}, series = {Brain, Behavior and Evolution}, volume = {77}, journal = {Brain, Behavior and Evolution}, number = {3}, issn = {0006-8977}, doi = {10.1159/000326211}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196815}, pages = {136-146}, year = {2011}, abstract = {Desert ants of the genus Cataglyphis possess remarkable visual navigation capabilities. Although Cataglyphis species lack a trail pheromone system, Cataglyphis fortis employs olfactory cues for detecting nest and food sites. To investigate potential adaptations in primary olfactory centers of the brain of C. fortis, we analyzed olfactory glomeruli (odor processing units) in their antennal lobes and compared them to glomeruli in different Cataglyphis species. Using confocal imaging and 3D reconstruction, we analyzed the number, size and spatial arrangement of olfactory glomeruli in C. fortis, C.albicans, C.bicolor, C.rubra, and C.noda. Workers of all Cataglyphis species have smaller numbers of glomeruli (198-249) compared to those previously found in olfactory-guided ants. Analyses in 2 species of Formica - a genus closely related to Cataglyphis - revealed substantially higher numbers of olfactory glomeruli (c. 370), which is likely to reflect the importance of olfaction in these wood ant species. Comparisons between Cataglyphis species revealed 2 special features in C. fortis. First, with c. 198 C. fortis has the lowest number of glomeruli compared to all other species. Second, a conspicuously enlarged glomerulus is located close to the antennal nerve entrance. Males of C. fortis possess a significantly smaller number of glomeruli (c. 150) compared to female workers and queens. A prominent male-specific macroglomerulus likely to be involved in sex pheromone communication occupies a position different from that of the enlarged glomerulus in females. The behavioral significance of the enlarged glomerulus in female workers remains elusive. The fact that C. fortis inhabits microhabitats (salt pans) that are avoided by all other Cataglyphis species suggests that extreme ecological conditions may not only have resulted in adaptations of visual capabilities, but also in specializations of the olfactory system.}, language = {en} } @article{SchmittKellerNourkamiTutdibietal.2011, author = {Schmitt, Jana and Keller, Andreas and Nourkami-Tutdibi, Nasenien and Heisel, Sabrina and Habel, Nunja and Leidinger, Petra and Ludwig, Nicole and Gessler, Manfred and Graf, Norbert and Berthold, Frank and Lenhof, Hans-Peter and Meese, Eckart}, title = {Autoantibody Signature Differentiates Wilms Tumor Patients from Neuroblastoma Patients}, series = {PLoS ONE}, volume = {6}, journal = {PLoS ONE}, number = {12}, doi = {10.1371/journal.pone.0028951}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133794}, pages = {e28951}, year = {2011}, abstract = {Several studies report autoantibody signatures in cancer. The majority of these studies analyzed adult tumors and compared the seroreactivity pattern of tumor patients with the pattern in healthy controls. Here, we compared the autoimmune response in patients with neuroblastoma and patients with Wilms tumor representing two different childhood tumors. We were able to differentiate untreated neuroblastoma patients from untreated Wilms tumor patients with an accuracy of 86.8\%, a sensitivity of 87.0\% and a specificity of 86.7\%. The separation of treated neuroblastoma patients from treated Wilms tumor patients' yielded comparable results with an accuracy of 83.8\%. We furthermore identified the antigens that contribute most to the differentiation between both tumor types. The analysis of these antigens revealed that neuroblastoma was considerably more immunogenic than Wilms tumor. The reported antigens have not been found to be relevant for comparative analyses between other tumors and controls. In summary, neuroblastoma appears as a highly immunogenic tumor as demonstrated by the extended number of antigens that separate this tumor from Wilms tumor.}, language = {en} } @article{OndruschKreft2011, author = {Ondrusch, Nicolai and Kreft, J{\"u}rgen}, title = {Blue and Red Light Modulates SigB-Dependent Gene Transcription, Swimming Motility and Invasiveness in \(Listeria\) \(monocytogenes\)}, series = {PLoS ONE}, volume = {6}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0016151}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134050}, pages = {e16151}, year = {2011}, abstract = {Background: In a number of gram-positive bacteria, including Listeria, the general stress response is regulated by the alternative sigma factor B (SigB). Common stressors which lead to the activation of SigB and the SigB-dependent regulon are high osmolarity, acid and several more. Recently is has been shown that also blue and red light activates SigB in Bacillus subtilis. Methodology/Principal Findings: By qRT-PCR we analyzed the transcriptional response of the pathogen L. monocytogenes to blue and red light in wild type bacteria and in isogenic deletion mutants for the putative blue-light receptor Lmo0799 and the stress sigma factor SigB. It was found that both blue (455 nm) and red (625 nm) light induced the transcription of sigB and SigB-dependent genes, this induction was completely abolished in the SigB mutant. The blue-light effect was largely dependent on Lmo0799, proving that this protein is a genuine blue-light receptor. The deletion of lmo0799 enhanced the red-light effect, the underlying mechanism as well as that of SigB activation by red light remains unknown. Blue light led to an increased transcription of the internalin A/B genes and of bacterial invasiveness for Caco-2 enterocytes. Exposure to blue light also strongly inhibited swimming motility of the bacteria in a Lmo0799- and SigB-dependent manner, red light had no effect there. Conclusions/Significance: Our data established that visible, in particular blue light is an important environmental signal with an impact on gene expression and physiology of the non-phototrophic bacterium L. monocytogenes. In natural environments these effects will result in sometimes random but potentially also cyclic fluctuations of gene activity, depending on the light conditions prevailing in the respective habitat.}, language = {en} } @article{OndruschKreft2011, author = {Ondrusch, Nicolai and Kreft, J{\"u}rgen}, title = {Blue and Red Light Modulates SigB-Dependent Gene Transcription, Swimming Motility and Invasiveness in Listeria monocytogenes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75451}, year = {2011}, abstract = {Background: In a number of gram-positive bacteria, including Listeria, the general stress response is regulated by the alternative sigma factor B (SigB). Common stressors which lead to the activation of SigB and the SigB-dependent regulon are high osmolarity, acid and several more. Recently is has been shown that also blue and red light activates SigB in Bacillus subtilis. Methodology/Principal Findings: By qRT-PCR we analyzed the transcriptional response of the pathogen L. monocytogenes to blue and red light in wild type bacteria and in isogenic deletion mutants for the putative blue-light receptor Lmo0799 and the stress sigma factor SigB. It was found that both blue (455 nm) and red (625 nm) light induced the transcription of sigB and SigB-dependent genes, this induction was completely abolished in the SigB mutant. The blue-light effect was largely dependent on Lmo0799, proving that this protein is a genuine blue-light receptor. The deletion of lmo0799 enhanced the red-light effect, the underlying mechanism as well as that of SigB activation by red light remains unknown. Blue light led to an increased transcription of the internalin A/B genes and of bacterial invasiveness for Caco-2 enterocytes. Exposure to blue light also strongly inhibited swimming motility of the bacteria in a Lmo0799- and SigB-dependent manner, red light had no effect there. Conclusions/Significance: Our data established that visible, in particular blue light is an important environmental signal with an impact on gene expression and physiology of the non-phototrophic bacterium L. monocytogenes. In natural environments these effects will result in sometimes random but potentially also cyclic fluctuations of gene activity, depending on the light conditions prevailing in the respective habitat.}, subject = {Listeria monocytogenes}, language = {en} }