@article{SchmittBackesNourkamiTutdibietal.2012, author = {Schmitt, Jana and Backes, Christina and Nourkami-Tutdibi, Nasenien and Leidinger, Petra and Deutscher, Stephanie and Beier, Markus and Gessler, Manfred and Graf, Norbert and Lenhof, Hans-Peter and Keller, Andreas and Meese, Eckart}, title = {Treatment-independent miRNA signature in blood of wilms tumor patients}, series = {BMC Genomics}, volume = {13}, journal = {BMC Genomics}, number = {379}, doi = {10.1186/1471-2164-13-379}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-124034}, year = {2012}, abstract = {Background Blood-born miRNA signatures have recently been reported for various tumor diseases. Here, we compared the miRNA signature in Wilms tumor patients prior and after preoperative chemotherapy according to SIOP protocol 2001. Results We did not find a significant difference between miRNA signature of both groups. However both, Wilms tumor patients prior and after chemotherapy showed a miRNA signature different from healthy controls. The signature of Wilms tumor patients prior to chemotherapy showed an accuracy of 97.5\% and of patients after chemotherapy an accuracy of 97.0\%, each as compared to healthy controls. Conclusion Our results provide evidence for a blood-born Wilms tumor miRNA signature largely independent of four weeks preoperative chemotherapy treatment.}, language = {en} } @article{WegertVokuhZiegleretal.2017, author = {Wegert, Jenny and Vokuh, Christian and Ziegler, Barbara and Ernestus, Karen and Leuschner, Ivo and Furtw{\"a}ngler, Rhoikos and Graf, Norbert and Gessler, Manfred}, title = {TP53 alterations in Wilms tumour represent progression events with strong intratumour heterogeneity that are closely linked but not limited to anaplasia}, series = {The Journal of Pathology: Clinical Research}, volume = {3}, journal = {The Journal of Pathology: Clinical Research}, doi = {10.1002/cjp2.77}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158302}, pages = {234-248}, year = {2017}, abstract = {TP53 mutations have been associated with anaplasia in Wilms tumour, which conveys a high risk for relapse and fatal outcome. Nevertheless, TP53 alterations have been reported in no more than 60\% of anaplastic tumours, and recent data have suggested their presence in tumours that do not fulfil the criteria for anaplasia, questioning the clinical utility of TP53 analysis. Therefore, we characterized the TP53 status in 84 fatal cases of Wilms tumour, irrespective of histological subtype. We identified TP53 alterations in at least 90\% of fatal cases of anaplastic Wilms tumour, and even more when diffuse anaplasia was present, indicating a very strong if not absolute coupling between anaplasia and deregulation of p53 function. Unfortunately, TP53 mutations do not provide additional predictive value in anaplastic tumours since the same mutation rate was found in a cohort of non-fatal anaplastic tumours. When classified according to tumour stage, patients with stage I diffuse anaplastic tumours still had a high chance of survival (87\%), but this rate dropped to 26\% for stages II-IV. Thus, volume of anaplasia or possible spread may turn out to be critical parameters. Importantly, among non-anaplastic fatal tumours, 26\% had TP53 alterations, indicating that TP53 screening may identify additional cases at risk. Several of these non-anaplastic tumours fulfilled some criteria for anaplasia, for example nuclear unrest, suggesting that such partial phenotypes should be under special scrutiny to enhance detection of high-risk tumours via TP53 screening. A major drawback is that these alterations are secondary changes that occur only later in tumour development, leading to striking intratumour heterogeneity that requires multiple biopsies and analysis guided by histological criteria. In conclusion, we found a very close correlation between histological signs of anaplasia and TP53 alterations. The latter may precede development of anaplasia and thereby provide diagnostic value pointing towards aggressive disease.}, language = {en} } @article{VujanićGesslerOomsetal.2018, author = {Vujanić, Gordan M. and Gessler, Manfred and Ooms, Ariadne H. A. G. and Collini, Paola and Coulomb-l'Hermine, Aurore and D'Hooghe, Ellen and de Krijger, Ronald R. and Perotti, Daniela and Pritchard-Jones, Kathy and Vokuhl, Christian and van den Heuvel-Eibrink, Marry M. and Graf, Norbert}, title = {The UMBRELLA SIOP-RTSG 2016 Wilms tumour pathology and molecular biology protocol}, series = {Nature Reviews Urology}, volume = {15}, journal = {Nature Reviews Urology}, organization = {International Society of Paediatric Oncology-Renal Tumour Study Group (SIOP-RTSG)}, doi = {10.1038/s41585-018-0100-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233265}, pages = {693-701}, year = {2018}, abstract = {On the basis of the results of previous national and international trials and studies, the Renal Tumour Study Group of the International Society of Paediatric Oncology (SIOP-RTSG) has developed a new study protocol for paediatric renal tumours: the UMBRELLA SIOP-RTSG 2016 protocol (the UMBRELLA protocol). Currently, the overall outcomes of patients with Wilms tumour are excellent, but subgroups with poor prognosis and increased relapse rates still exist. The identification of these subgroups is of utmost importance to improve treatment stratification, which might lead to reduction of the direct and late effects of chemotherapy. The UMBRELLA protocol aims to validate new prognostic factors, such as blastemal tumour volume and molecular markers, to further improve outcome. To achieve this aim, large, international, high-quality databases are needed, which dictate optimization and international harmonization of specimen handling and comprehensive sampling of biological material, refine definitions and improve logistics for expert review. To promote broad implementation of the UMBRELLA protocol, the updated SIOP-RTSG pathology and molecular biology protocol for Wilms tumours has been outlined, which is a consensus from the SIOP-RTSG pathology panel.}, language = {en} } @article{GesslerGrupeGrzeschiketal.1992, author = {Gessler, Manfred and Grupe, Andrew and Grzeschik, Karl-Heinz and Pongs, Olaf}, title = {The potassium channel gene HK1 maps to human chromosome 11p14.1, close to the FSHB gene}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59184}, year = {1992}, abstract = {Transiently activating (A-type) potassium (K) channels are important regulators of action potential and action potential firing frequencies. HK1 designates the firsthuman cDNA that is highly homologous to the rat RCK4 cDNA that codes for an A-type K-channel. The HK1 channel is expressed in heart. By somatic cell hybrid analysis, the HK1 gene has been assigned to human chromosome 11p13-pl4, the WAGR deletion region (Wilms tumor, aniridia, genito-urinary abnormalities and mental retardation). Subsequent pulsed field gel (PFG) analysis and comparison with the well-established PFG map of this region localized the gene to 11p14, 200-600 kb telomeric to the FSHB gene.}, subject = {Biochemie}, language = {en} } @article{GroebnerWorstWeischenfeldtetal.2018, author = {Gr{\"o}bner, Susanne N. and Worst, Barbara C. and Weischenfeldt, Joachim and Buchhalter, Ivo and Kleinheinz, Kortine and Rudneva, Vasilisa A. and Johann, Pascal D. and Balasubramanian, Gnana Prakash and Segura-Wang, Maia and Brabetz, Sebastian and Bender, Sebastian and Hutter, Barbara and Sturm, Dominik and Pfaff, Elke and H{\"u}bschmann, Daniel and Zipprich, Gideon and Heinold, Michael and Eils, J{\"u}rgen and Lawerenz, Christian and Erkek, Serap and Lambo, Sander and Waszak, Sebastian and Blattmann, Claudia and Borkhardt, Arndt and Kuhlen, Michaela and Eggert, Angelika and Fulda, Simone and Gessler, Manfred and Wegert, Jenny and Kappler, Roland and Baumhoer, Daniel and Stefan, Burdach and Kirschner-Schwabe, Renate and Kontny, Udo and Kulozik, Andreas E. and Lohmann, Dietmar and Hettmer, Simone and Eckert, Cornelia and Bielack, Stefan and Nathrath, Michaela and Niemeyer, Charlotte and Richter, G{\"u}nther H. and Schulte, Johannes and Siebert, Reiner and Westermann, Frank and Molenaar, Jan J. and Vassal, Gilles and Witt, Hendrik and Burkhardt, Birgit and Kratz, Christian P. and Witt, Olaf and van Tilburg, Cornelis M. and Kramm, Christof M. and Fleischhack, Gudrun and Dirksen, Uta and Rutkowski, Stefan and Fr{\"u}hwald, Michael and Hoff, Katja von and Wolf, Stephan and Klingebeil, Thomas and Koscielniak, Ewa and Landgraf, Pablo and Koster, Jan and Resnick, Adam C. and Zhang, Jinghui and Liu, Yanling and Zhou, Xin and Waanders, Angela J. and Zwijnenburg, Danny A. and Raman, Pichai and Brors, Benedikt and Weber, Ursula D. and Northcott, Paul A. and Pajtler, Kristian W. and Kool, Marcel and Piro, Rosario M. and Korbel, Jan O. and Schlesner, Matthias and Eils, Roland and Jones, David T. W. and Lichter, Peter and Chavez, Lukas and Zapatka, Marc and Pfister, Stefan M.}, title = {The landscape of genomic alterations across childhood cancers}, series = {Nature}, volume = {555}, journal = {Nature}, organization = {ICGC PedBrain-Seq Project, ICGC MMML-Seq Project,}, doi = {10.1038/nature25480}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229579}, pages = {321-327}, year = {2018}, abstract = {Pan-cancer analyses that examine commonalities and differences among various cancer types have emerged as a powerful way to obtain novel insights into cancer biology. Here we present a comprehensive analysis of genetic alterations in a pan-cancer cohort including 961 tumours from children, adolescents, and young adults, comprising 24 distinct molecular types of cancer. Using a standardized workflow, we identified marked differences in terms of mutation frequency and significantly mutated genes in comparison to previously analysed adult cancers. Genetic alterations in 149 putative cancer driver genes separate the tumours into two classes: small mutation and structural/copy-number variant (correlating with germline variants). Structural variants, hyperdiploidy, and chromothripsis are linked to TP53 mutation status and mutational signatures. Our data suggest that 7-8\% of the children in this cohort carry an unambiguous predisposing germline variant and that nearly 50\% of paediatric neoplasms harbour a potentially druggable event, which is highly relevant for the design of future clinical trials.}, language = {en} } @article{GesslerHameisterHenryetal.1990, author = {Gessler, Manfred and Hameister, H. and Henry, I. and Junien, C. and Braun, T. and Arnold, H. H.}, title = {The human MyoD1 (MYF3) gene maps on the short arm of chromosome 11 but is not associated with the WAGR locus or the region for the Beckwith-Wiedemann syndrome}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59221}, year = {1990}, abstract = {The human gene encoding the myogenic determination factor myf3 (mouse MyoD1) has been mapped to the short arm of chromosome 11. Analysis of several somatic cell hybrids containing various derivatives with deletions or translocations revealed that the human MyoD (MYF3) gene is not associated with the WAGR locus at chromosomal band 11pl3 nor with the loss of the heterozygosity region at 11p15.5 related to the Beckwith-Wiedemann syndrome. Subregional mapping by in situ hybridization with an myf3 specific probe shows that the gene resides at the chromosomal band llp14, possibly at llp14.3.}, subject = {Biochemie}, language = {en} } @article{GesslerKoenigBruns1992, author = {Gessler, Manfred and K{\"o}nig, A. and Bruns, G. A. P.}, title = {The genomic organization and expression of the WT1 gene}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59195}, year = {1992}, abstract = {The Wilms tumor gene WTl, a proposed tumor suppressor gene, has been identifled based on its location within a homozygous deletion found in tumor tissue. The gene encodes a putative transcription factor containing a Cys/His zinc finger domain. The critical homozygous deletions, however, are rarely seen, suggesting that in many cases the gene may be inactivated by more subtle alterations. To facilitate the seareh for smaller deletions and point mutations we have established the genomic organization of the WTl gene and have determined the sequence of all 10 exons and flanking intron DNA. The pattern of alternative splicing in two regions has been characterized in detail. These results will form the basis for future studies of mutant alleles at this locus.}, subject = {Biochemie}, language = {en} } @article{HeisigWeberEnglbergeretal.2012, author = {Heisig, Julia and Weber, David and Englberger, Eva and Winkler, Anja and Kneitz, Susanne and Sung, Wing-Kin and Wolf, Elmar and Eilers, Martin and Wei, Chia-Lin and Gessler, Manfred}, title = {Target Gene Analysis by Microarrays and Chromatin Immunoprecipitation Identifies HEY Proteins as Highly Redundant bHLH Repressors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75341}, year = {2012}, abstract = {HEY bHLH transcription factors have been shown to regulate multiple key steps in cardiovascular development. They can be induced by activated NOTCH receptors, but other upstream stimuli mediated by TGFß and BMP receptors may elicit a similar response. While the basic and helix-loop-helix domains exhibit strong similarity, large parts of the proteins are still unique and may serve divergent functions. The striking overlap of cardiac defects in HEY2 and combined HEY1/HEYL knockout mice suggested that all three HEY genes fulfill overlapping function in target cells. We therefore sought to identify target genes for HEY proteins by microarray expression and ChIPseq analyses in HEK293 cells, cardiomyocytes, and murine hearts. HEY proteins were found to modulate expression of their target gene to a rather limited extent, but with striking functional interchangeability between HEY factors. Chromatin immunoprecipitation revealed a much greater number of potential binding sites that again largely overlap between HEY factors. Binding sites are clustered in the proximal promoter region especially of transcriptional regulators or developmental control genes. Multiple lines of evidence suggest that HEY proteins primarily act as direct transcriptional repressors, while gene activation seems to be due to secondary or indirect effects. Mutagenesis of putative DNA binding residues supports the notion of direct DNA binding. While class B E-box sequences (CACGYG) clearly represent preferred target sequences, there must be additional and more loosely defined modes of DNA binding since many of the target promoters that are efficiently bound by HEY proteins do not contain an Ebox motif. These data clearly establish the three HEY bHLH factors as highly redundant transcriptional repressors in vitro and in vivo, which explains the combinatorial action observed in different tissues with overlapping expression.}, subject = {Biologie}, language = {en} } @article{vanHeyningenBickmoreSeawrightetal.1990, author = {van Heyningen, V. and Bickmore, W. A. and Seawright, A. and Fletcher, J. M. and Maule, J. and Fekete, G. and Gessler, Manfred and Bruns, G. A. and Huerre-Jeanpierre, C. and Junien, C.}, title = {Role for the Wilms tumor gene in genital development?}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-59238}, year = {1990}, abstract = {No abstract available}, subject = {Biochemie}, language = {en} } @article{WegertBausenweinKneitzetal.2011, author = {Wegert, Jenny and Bausenwein, Sabrina and Kneitz, Susanne and Roth, Sabine and Graf, Norbert and Geissinger, Eva and Gessler, Manfred}, title = {Retinoic acid pathway activity in Wilms tumors and characterization of biological responses in vitro}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69137}, year = {2011}, abstract = {Background: Wilms tumor (WT) is one of the most common malignancies in childhood. With current therapy protocols up to 90\% of patients can be cured, but there is still a need to improve therapy for patients with aggressive WT and to reduce treatment intensity where possible. Prior data suggested a deregulation of the retinoic acid (RA) signaling pathway in high-risk WT, but its mode of action remained unclear. Results: The association of retinoid signaling and clinical parameters could be validated in a large independent tumor set, but its relevance in primary nephrectomy tumors from very young children may be different. Reduced RA pathway activity and MYCN overexpression were found in high risk tumors as opposed to tumors with low/ intermediate risk, suggesting a beneficial impact of RA especially on advanced WT. To search for possible modes of action of retinoids as novel therapeutic options, primary tumor cell cultures were treated in vitro with all-trans-RA (ATRA), 9cis-RA, fenretinide and combinations of retinoids and a histone deacetylase (HDAC) inhibitor. Genes deregulated in high risk tumors showed opposite changes upon treatment suggesting a positive effect of retinoids. 6/7 primary cultures tested reduced proliferation, irrespective of prior RA signaling levels. The only variant culture was derived from mesoblastic nephroma, a distinct childhood kidney neoplasm. Retinoid/HDAC inhibitor combinations provided no synergistic effect. ATRA and 9cis-RA induced morphological changes suggestive of differentiation, while fenretinide induced apoptosis in several cultures tested. Microarray analysis of ATRA treated WT cells revealed differential expression of many genes involved in extracellular matrix formation and osteogenic, neuronal or muscle differentiation. The effects documented appear to be reversible upon drug withdrawal, however. Conclusions: Altered retinoic acid signaling has been validated especially in high risk Wilms tumors. In vitro testing of primary tumor cultures provided clear evidence of a potential utility of retinoids in Wilms tumor treatment based on the analysis of gene expression, proliferation, differentiation and apoptosis.}, subject = {Krebs}, language = {en} }