@article{HsiehLinsenmair2012, author = {Hsieh, Yu-Lung and Linsenmair, Karl Eduard}, title = {Seasonal dynamics of arboreal spider diversity in a temperate forest}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75158}, year = {2012}, abstract = {Measuring and estimating biodiversity patterns is a fundamental task of the scientist working to support conservation and informmanagement decisions.Most biodiversity studies in temperate regions were often carried out over a very short period of time (e.g., a single season) and it is often—at least tacitly—assumed that these short-termfindings are representative of long-termgeneral patterns.However, should the studied biodiversity pattern in fact contain significant temporal dynamics, perhaps leading to contradictory conclusions. Here, we studied the seasonal diversity dynamics of arboreal spider communities dwelling in 216 European beeches (Fagus sylvatica L.) to assess the spider community composition in the following seasons: two cold seasons (I:November 2005-January 2006; II: February-April) and two warm seasons (III: May-July; IV: August-October). We show that the usually measured diversity of the warmseason community (IV: 58 estimated species) alone did not deliver a reliable image of the overall diversity present in these trees, and therefore, we recommend it should not be used for sampling protocols aimed at providing a full picture of a forest's biodiversity in the temperate zones. In particular, when the additional samplings of other seasons (I, II, III) were included, the estimated species richness nearly doubled (108). Community I possessed the lowest diversity and evenness due to the harsh winter conditions: this community was comprised of one dominant species together with several species low in abundance. Similarity was lowest (38.6\%) between seasonal communities I and III, indicating a significant species turnover due to recolonization, so that community III had the highest diversity. Finally, using nonparametric estimators, we found that further sampling in late winter (February-April) is most needed to complete our inventory. Our study clearly demonstrates that seasonal dynamics of communities should be taken into account when studying biodiversity patterns of spiders, and probably forest arthropods in general.}, subject = {Biologie}, language = {en} } @article{SturmHessWeibeletal.2012, author = {Sturm, Julia B. and Hess, Michael and Weibel, Stephanie and Chen, Nanhei G. and Yu, Yong A. and Zhang, Quian and Donat, Ulrike and Reiss, Cora and Gambaryan, Stepan and Krohne, Georg and Stritzker, Jochen and Szalay, Aladar A.}, title = {Functional hyper-IL-6 from vaccinia virus-colonized tumors triggers platelet formation and helps to alleviate toxicity of mitomycin C enhanced virus therapy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75224}, year = {2012}, abstract = {Background: Combination of oncolytic vaccinia virus therapy with conventional chemotherapy has shown promise for tumor therapy. However, side effects of chemotherapy including thrombocytopenia, still remain problematic. Methods: Here, we describe a novel approach to optimize combination therapy of oncolytic virus and chemotherapy utilizing virus-encoding hyper-IL-6, GLV-1h90, to reduce chemotherapy-associated side effects. Results: We showed that the hyper-IL-6 cytokine was successfully produced by GLV-1h90 and was functional both in cell culture as well as in tumor-bearing animals, in which the cytokine-producing vaccinia virus strain was well tolerated. When combined with the chemotherapeutic mitomycin C, the anti-tumor effect of the oncolytic virotherapy was significantly enhanced. Moreover, hyper-IL-6 expression greatly reduced the time interval during which the mice suffered from chemotherapy-induced thrombocytopenia. Conclusion: Therefore, future clinical application would benefit from careful investigation of additional cytokine treatment to reduce chemotherapy-induced side effects.}, subject = {Biologie}, language = {en} } @article{PatilGentschevNolteetal.2012, author = {Patil, Sandeep S. and Gentschev, Ivaylo and Nolte, Ingo and Ogilvie, Gregory and Szalay, Aladar A.}, title = {Oncolytic virotherapy in veterinary medicine: current status and future prospects for canine patients}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75128}, year = {2012}, abstract = {Oncolytic viruses refer to those that are able to eliminate malignancies by direct targeting and lysis of cancer cells, leaving non-cancerous tissues unharmed. Several oncolytic viruses including adenovirus strains, canine distemper virus and vaccinia virus strains have been used for canine cancer therapy in preclinical studies. However, in contrast to human studies, clinical trials with oncolytic viruses for canine cancer patients have not been reported. An 'ideal' virus has yet to be identified. This review is focused on the prospective use of oncolytic viruses in the treatment of canine tumors - a knowledge that will undoubtedly contribute to the development of oncolytic viral agents for canine cancer therapy in the future.}, subject = {Medizin}, language = {en} } @article{BeisserGrohmeKopkaetal.2012, author = {Beisser, Daniela and Grohme, Markus A. and Kopka, Joachim and Frohme, Marcus and Schill, Ralph O. and Hengherr, Steffen and Dandekar, Thomas and Klau, Gunnar W. and Dittrich, Marcus and M{\"u}ller, Tobias}, title = {Integrated pathway modules using time-course metabolic profiles and EST data from Milnesium tardigradum}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75241}, year = {2012}, abstract = {Background: Tardigrades are multicellular organisms, resistant to extreme environmental changes such as heat, drought, radiation and freezing. They outlast these conditions in an inactive form (tun) to escape damage to cellular structures and cell death. Tardigrades are apparently able to prevent or repair such damage and are therefore a crucial model organism for stress tolerance. Cultures of the tardigrade Milnesium tardigradum were dehydrated by removing the surrounding water to induce tun formation. During this process and the subsequent rehydration, metabolites were measured in a time series by GC-MS. Additionally expressed sequence tags are available, especially libraries generated from the active and inactive state. The aim of this integrated analysis is to trace changes in tardigrade metabolism and identify pathways responsible for their extreme resistance against physical stress. Results: In this study we propose a novel integrative approach for the analysis of metabolic networks to identify modules of joint shifts on the transcriptomic and metabolic levels. We derive a tardigrade-specific metabolic network represented as an undirected graph with 3,658 nodes (metabolites) and 4,378 edges (reactions). Time course metabolite profiles are used to score the network nodes showing a significant change over time. The edges are scored according to information on enzymes from the EST data. Using this combined information, we identify a key subnetwork (functional module) of concerted changes in metabolic pathways, specific for de- and rehydration. The module is enriched in reactions showing significant changes in metabolite levels and enzyme abundance during the transition. It resembles the cessation of a measurablemetabolism (e.g. glycolysis and amino acid anabolism) during the tun formation, the production of storage metabolites and bioprotectants, such as DNA stabilizers, and the generation of amino acids and cellular components from monosaccharides as carbon and energy source during rehydration. Conclusions: The functional module identifies relationships among changed metabolites (e.g. spermidine) and reactions and provides first insights into important altered metabolic pathways. With sparse and diverse data available, the presented integrated metabolite network approach is suitable to integrate all existing data and analyse it in a combined manner.}, subject = {Milnesium tardigradum}, language = {en} } @article{MenescalSchmidtLiedtkeetal.2012, author = {Menescal, Luciana and Schmidt, Cornelia and Liedtke, Daniel and Schartl, Manfred}, title = {Liver hyperplasia after tamoxifen induction of Myc in a transgenic medaka model}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75316}, year = {2012}, abstract = {Myc is a global transcriptional regulator and one of the most frequently overexpressed oncoproteins in human tumors. It is well established that activation of Myc leads to enhanced cell proliferation but can also lead to increased apoptosis. The use of animal models expressing deregulated levels of Myc has helped to both elucidate its function in normal cells and give insight into how Myc initiates and maintains tumorigenesis. Analyses of the medaka (Oryzias latipes) genome uncovered the unexpected presence of two Myc gene copies in this teleost species. Comparison of these Myc versions to other vertebrate species revealed that one gene, myc17, differs by the loss of some conserved regulatory protein motifs present in all other known Myc genes. To investigate how such differences might affect the basic biological functions of Myc, we generated a tamoxifeninducible in vivo model utilizing a natural, fish-specific Myc gene. Using this model we show that, when activated, Myc17 leads to increased proliferation and to apoptosis in a dose-dependent manner, similar to human Myc. We have also shown that long-term Myc17 activation triggers liver hyperplasia in adult fish, allowing this newly established transgenic medaka model to be used to study the transition from hyperplasia to liver cancer and to identify Myc-induced tumorigenesis modifiers.}, subject = {Biologie}, language = {en} } @article{FraunholzSinha2012, author = {Fraunholz, Martin and Sinha, Bhanu}, title = {Intracellular staphylococcus aureus: Live-in and let die}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {2}, journal = {Frontiers in Cellular and Infection Microbiology}, number = {43}, doi = {10.3389/fcimb.2012.00043}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123374}, year = {2012}, abstract = {Staphylococcus aureus uses a plethora of virulence factors to accommodate a diversity of niches in its human host. Aside from the classical manifestations of S. aureus-induced diseases, the pathogen also invades and survives within mammalian host cells. The survival strategies of the pathogen are as diverse as strains or host cell types used. S. aureus is able to replicate in the phagosome or freely in the cytoplasm of its host cells. It escapes the phagosome of professional and non-professional phagocytes, subverts autophagy, induces cell death mechanisms such as apoptosis and pyronecrosis, and even can induce anti-apoptotic programs in phagocytes. The focus of this review is to present a guide to recent research outlining the variety of intracellular fates of S. aureus.}, language = {en} } @article{RakosyStreinzerPaulusetal.2012, author = {Rakosy, Demetra and Streinzer, Martin and Paulus, Hannes F. and Spaethe, Johannes}, title = {Floral visual signal increases reproductive success in a sexually deceptive orchid}, series = {Arthropod-Plant Interactions}, volume = {6}, journal = {Arthropod-Plant Interactions}, number = {4}, doi = {10.1007/s11829-012-9217-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127209}, pages = {671-681}, year = {2012}, abstract = {Sexually deceptive orchids mimic signals emitted by female insects in order to attract mate-searching males. Specific attraction of the targeted pollinator is achieved by sex pheromone mimicry, which constitutes the major attraction channel. In close vicinity of the flower, visual signals may enhance attraction, as was shown recently in the sexually deceptive orchid Ophrys heldreichii. Here, we conducted an in situ manipulation experiment in two populations of O. heldreichii on Crete to investigate whether the presence/absence of the conspicuous pink perianth affects reproductive success in two natural orchid populations. We estimated reproductive success of three treatment groups (with intact, removed and artificial perianth) throughout the flowering period as pollinaria removal (male reproductive success) and massulae deposition (female reproductive success). Reproductive success was significantly increased by the presence of a strong visual signal—the conspicuous perianth—in one study population, however, not in the second, most likely due to the low pollinator abundance in the latter population. This study provides further evidence that the coloured perianth in O. heldreichii is adaptive and thus adds to the olfactory signal to maximise pollinator attraction and reproductive success.}, language = {en} } @article{JahnSchrammSchnoelzeretal.2012, author = {Jahn, Daniel and Schramm, Sabine and Schn{\"o}lzer, Martina and Heilmann, Clemens J. and de Koster, Chris G. and Sch{\"u}tz, Wolfgang and Benavente, Ricardo and Alsheimer, Manfred}, title = {A truncated lamin A in the Lmna\(^{-/-}\) mouse line: Implications for the understanding of laminopathies}, series = {Nucleus}, volume = {3}, journal = {Nucleus}, number = {5}, doi = {10.4161/nucl.21676}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127281}, pages = {463-474}, year = {2012}, abstract = {During recent years a number of severe clinical syndromes, collectively termed laminopathies, turned out to be caused by various, distinct mutations in the human LMNA gene. Arising from this, remarkable progress has been made to unravel the molecular pathophysiology underlying these disorders. A great benefit in this context was the generation of an A-type lamin deficient mouse line (Lmna\(^{-/-}\)) by Sullivan and others,1 which has become one of the most frequently used models in the field and provided profound insights to many different aspects of A-type lamin function. Here, we report the unexpected finding that these mice express a truncated Lmna gene product on both transcriptional and protein level. Combining different approaches including mass spectrometry, we precisely define this product as a C-terminally truncated lamin A mutant that lacks domains important for protein interactions and post-translational processing. Based on our findings we discuss implications for the interpretation of previous studies using Lmna\(^{-/-}\) mice and the concept of human laminopathies.}, language = {en} } @article{JazbutyteFiedlerKneitzetal.2012, author = {Jazbutyte, Virginija and Fiedler, Jan and Kneitz, Susanne and Galuppo, Paolo and Just, Annette and Holzmann, Angelika and Bauersachs, Johann and Thum, Thomas}, title = {MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart}, series = {AGE}, volume = {35}, journal = {AGE}, number = {3}, doi = {10.1007/s11357-012-9407-9}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126745}, pages = {747-762}, year = {2012}, abstract = {MicroRNAs (miRs) are small non- coding RNA molecules controlling a plethora of biological processes such as development, cellular survival and senescence. We here determined miRs differentially regulated during cardiac postnatal development and aging. Cardiac function, morphology and miR expression profiles were determined in neonatal, 4 weeks, 6 months and 19 months old normotensive male healthy C57/Bl6N mice. MiR-22 was most prominently upregulated during cardiac aging. Cardiac expression of its bioinformatically predicted target mimecan (osteoglycin, OGN) was gradually decreased with advanced age. Luciferase reporter assays validated mimecan as a bona fide miR-22 target. Both, miR-22 and its target mimecan were co- expressed in cardiac fibroblasts and smooth muscle cells. Functionally, miR-22 overexpression induced cellular senescence and promoted migratory activity of cardiac fibroblasts. Small interference RNA-mediated silencing of mimecan in cardiac fibroblasts mimicked the miR-22-mediated effects. Rescue experiments revealed that the effects of miR-22 on cardiac fibroblasts were only partially mediated by mimecan. In conclusion, miR-22 upregulation in the aging heart contributed at least partly to accelerated cardiac fibroblast senescence and increased migratory activity. Our results suggest an involvement of miR-22 in age-associated cardiac changes, such as cardiac fibrosis.}, language = {en} } @article{TomeiAdamsUccellinietal.2012, author = {Tomei, Sara and Adams, Sharon and Uccellini, Lorenzo and Bedognetti, Davide and De Giorgi, Valeria and Erdenebileg, Narnygerel and Libera Ascierto, Maria and Reinboth, Jennifer and Liu, Qiuzhen and Bevilacqua, Generoso and Wang, Ena and Mazzanti, Chiara and Marincola, Francesco M.}, title = {Association between HRAS rs12628 and rs112587690 polymorphisms with the risk of melanoma in the North American population}, series = {Medical Oncology}, volume = {29}, journal = {Medical Oncology}, number = {5}, doi = {dx.doi.org/10.1007/s12032-012-0255-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126834}, pages = {3456-3461}, year = {2012}, abstract = {HRAS belongs to the RAS genes superfamily. RAS genes are important players in several human tumors and the single-nucleotide polymorphism rs12628 has been shown to contribute to the risk of bladder, colon, gastrointestinal, oral, and thyroid carcinoma. We hypothesized that this SNP may affect the risk of cutaneous melanoma as well. HRAS gene contains a polymorphic region (rs112587690), a repeated hexanucleotide -GGGCCT- located in intron 1. Three alleles of this region, P1, P2, and P3, have been identified that contain two, three, and four repeats of the hexanucleotide, respectively. We investigated the clinical impact of these polymorphisms in a case-control study. A total of 141 melanoma patients and 118 healthy donors from the North America Caucasian population were screened for rs12628 and rs112587690 polymorphisms. Genotypes were assessed by capillary sequencing or fragment analysis, respectively, and rs12628 CC and rs112587690 P1P1 genotypes significantly associated with increased melanoma risk (OR = 3.83, p = 0.003; OR = 11.3, p = 0.033, respectively), while rs112587690 P1P3 frequency resulted significantly higher in the control group (OR = 0.5, p = 0.017). These results suggest that rs12628 C homozygosis may be considered a potential risk factor for melanoma development in the North American population possibly through the linkage to rs112587690.}, language = {en} }