@article{RohmerDobritzTuncbilekDereetal.2022, author = {Rohmer, Carina and Dobritz, Ronja and Tuncbilek-Dere, Dilek and Lehmann, Esther and Gerlach, David and George, Shilpa Elizabeth and Bae, Taeok and Nieselt, Kay and Wolz, Christiane}, title = {Influence of Staphylococcus aureus strain background on Sa3int phage life cycle switches}, series = {Viruses}, volume = {14}, journal = {Viruses}, number = {11}, issn = {1999-4915}, doi = {10.3390/v14112471}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297209}, year = {2022}, abstract = {Staphylococcus aureus asymptomatically colonizes the nasal cavity of mammals, but it is also a leading cause of life-threatening infections. Most human nasal isolates carry Sa3 phages, which integrate into the bacterial hlb gene encoding a sphingomyelinase. The virulence factor-encoding genes carried by the Sa3-phages are highly human-specific, and most animal strains are Sa3 negative. Thus, both insertion and excision of the prophage could potentially confer a fitness advantage to S. aureus. Here, we analyzed the phage life cycle of two Sa3 phages, Φ13 and ΦN315, in different phage-cured S. aureus strains. Based on phage transfer experiments, strains could be classified into low (8325-4, SH1000, and USA300c) and high (MW2c and Newman-c) transfer strains. High-transfer strains promoted the replication of phages, whereas phage adsorption, integration, excision, or recA transcription was not significantly different between strains. RNASeq analyses of replication-deficient lysogens revealed no strain-specific differences in the CI/Mor regulatory switch. However, lytic genes were significantly upregulated in the high transfer strain MW2c Φ13 compared to strain 8325-4 Φ13. By transcriptional start site prediction, new promoter regions within the lytic modules were identified, which are likely targeted by specific host factors. Such host-phage interaction probably accounts for the strain-specific differences in phage replication and transfer frequency. Thus, the genetic makeup of the host strains may determine the rate of phage mobilization, a feature that might impact the speed at which certain strains can achieve host adaptation.}, language = {en} }