@article{GulveFrankKlepschetal.2017, author = {Gulve, Nitish and Frank, Celina and Klepsch, Maximilian and Prusty, Bhupesh K.}, title = {Chromosomal integration of HHV-6A during non-productive viral infection}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {512}, doi = {10.1038/s41598-017-00658-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158117}, year = {2017}, abstract = {Human herpesvirus 6A (HHV-6A) and 6B (HHV-6B) are two different species of betaherpesviruses that integrate into sub-telomeric ends of human chromosomes, for which different prevalence rates of integration have been reported. It has been demonstrated that integrated viral genome is stable and is fully retained. However, study of chromosomally integrated viral genome in individuals carrying inherited HHV-6 (iciHHV-6) showed unexpected number of viral DR copies. Hence, we created an in vitro infection model and studied retention of full or partial viral genome over a period of time. We observed an exceptional event where cells retained viral direct repeats (DRs) alone in the absence of the full viral genome. Finally, we found evidence for non-telomeric integration of HHV-6A DR in both cultured cells and in an iciHHV-6 individual. Our results shed light on several novel features of HHV-6A chromosomal integration and provide valuable information for future screening techniques.}, language = {en} } @article{PrustyChowdhuryGulveetal.2018, author = {Prusty, Bhupesh K. and Chowdhury, Suvagata R. and Gulve, Nitish and Rudel, Thomas}, title = {Peptidase Inhibitor 15 (PI15) Regulates Chlamydial CPAF Activity}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {8}, journal = {Frontiers in Cellular and Infection Microbiology}, number = {183}, issn = {2235-2988}, doi = {10.3389/fcimb.2018.00183}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196918}, year = {2018}, abstract = {Obligate intracellular pathogenic Chlamydia trachomatis express several serine proteases whose roles in chlamydial development and pathogenicity are not completely understood. The chlamydial protease CPAF is expressed during the replicative phase of the chlamydial developmental cycle and is secreted into the lumen of the Chlamydia-containing vacuole called inclusion. How the secreted protease is activated in the inclusion lumen is currently not fully understood. We have identified human serine peptidase inhibitor PI15 as a potential host factor involved in the regulation of CPAF activation. Silencing expression as well as over expression of PI15 affected normal development of Chlamydia. PI15 was transported into the chlamydial inclusion lumen where it co-localized with CPAF aggregates. We show that PI15 binds to the CPAF zymogen and potentially induces CPAF protease activity at low concentrations. However, at high concentrations PI15 inhibits CPAF activity possibly by blocking its protease domain. Our findings shed light on a new aspect of chlamydial host co-evolution which involves the recruitment of host cell proteins into the inclusion to control the activation of bacterial proteases like CPAF that are important for the normal development of Chlamydia.}, language = {en} } @article{RudelPrustySiegletal.2014, author = {Rudel, Thomas and Prusty, Bhupesh K. and Siegl, Christine and Gulve, Nitish and Mori, Yasuko}, title = {GP96 Interacts with HHV-6 during Viral Entry and Directs It for Cellular Degradation}, doi = {10. 1371/journal.pone.0113962}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111068}, year = {2014}, abstract = {CD46 and CD134 mediate attachment of Human Herpesvirus 6A (HHV-6A) and HHV-6B to host cell, respectively. But many cell types interfere with viral infection through rapid degradation of viral DNA. Hence, not all cells expressing these receptors are permissive to HHV-6 DNA replication and production of infective virions suggesting the involvement of additional factors that influence HHV-6 propagation. Here, we used a proteomics approach to identify other host cell proteins necessary for HHV-6 binding and entry. We found host cell chaperone protein GP96 to interact with HHV-6A and HHV-6B and to interfere with virus propagation within the host cell. In human peripheral blood mononuclear cells (PBMCs), GP96 is transported to the cell surface upon infection with HHV-6 and interacts with HHV-6A and -6B through its C-terminal end. Suppression of GP96 expression decreased initial viral binding but increased viral DNA replication. Transient expression of human GP96 allowed HHV-6 entry into CHO-K1 cells even in the absence of CD46. Thus, our results suggest an important role for GP96 during HHV-6 infection, which possibly supports the cellular degradation of the virus.}, language = {en} }