@phdthesis{Hovhanyan2014, author = {Hovhanyan, Anna}, title = {Functional analyses of Mushroom body miniature (Mbm) in growth and proliferation of neural progenitor cells in the central brain of Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-91303}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Zellwachstum und Zellteilung stellen zwei miteinander verkn{\"u}pfte Prozesse dar, die dennoch grunds{\"a}tzlich voneinander zu unterscheiden sind. Die Wiederaufnahme der Proliferation von neuralen Vorl{\"a}uferzellen (Neuroblasten) im Zentralhirn von Drosophila nach der sp{\"a}t-embryonalen Ruhephase erfordert zun{\"a}chst Zellwachstum. Der Erhalt der regul{\"a}ren Zellgr{\"o}ße ist eine wichtige Voraussetzung f{\"u}r die kontinuierliche Proliferation der Neuroblasten {\"u}ber die gesamte larvale Entwicklungsphase. Neben extrinsischen Ern{\"a}hrungssignalen ist f{\"u}r das Zellwachstum eine kontinuierliche Versorgung mit funktionellen Ribosomen notwendig, damit die Proteinsynthese aufrechterhalten werden kann. Mutationen im mushroom body miniature (mbm) Gen wurden {\"u}ber einen genetischen Screen nach strukturellen Gehirnmutanten identifiziert. Der Schwerpunkt dieser Arbeit lag in der funktionellen Charakterisierung des Mbm Proteins als neues nukleol{\"a}res Protein und damit seiner m{\"o}glichen Beteiligung in der Ribosomenbiogenese. Der Vergleich der relativen Expressionslevel von Mbm und anderen nuklearen Proteinen in verschiedenen Zelltypen zeigte eine verst{\"a}rkte Expression von Mbm in der fibrill{\"a}ren Komponente des Nukleolus von Neuroblasten. Diese Beobachtung legte die Vermutung nahe, dass in Neuroblasten neben generell ben{\"o}tigten Faktoren der Ribosomenbiogenese auch Zelltyp-spezifische Faktoren existieren. Mutationen in mbm verursachen Proliferationsdefekte von Neuroblasten, wirken sich jedoch nicht auf deren Zellpolarit{\"a}t, die Orientierung der mitotischen Spindel oder die Asymmetrie der Zellteilung aus. Stattdessen wurde eine Reduktion der Zellgr{\"o}ße beobachtet, was im Einklang mit einer Beeintr{\"a}chtigung der Ribosomenbiogenese steht. Insbesondere f{\"u}hrt der Verlust der Mbm Funktion zu einer Retention der kleinen ribosomalen Untereinheit im Nukleolus, was eine verminderte Proteinsynthese zur Folge hat. Interessanterweise wurden St{\"o}rungen der Ribosomenbiogenese nur in den Neuroblasten beobachtet. Zudem ist Mbm offensichtlich nicht erforderlich, um Wachstum oder die Proliferation von Zellen der Fl{\"u}gelimginalscheibe und S2-Zellen zu steuern, was wiederum daf{\"u}r spricht, dass Mbm eine Neuroblasten-spezifische Funktion erf{\"u}llt. Dar{\"u}ber hinaus wurden die transkriptionelle Regulation des mbm-Gens und die funktionelle Bedeutung von posttranslationalen Modifikationen analysiert. Mbm Transkription wird von dMyc reguliert. Ein gemeinsames Merkmal von dMyc Zielgenen ist das Vorhandensein einer konservierten „E-Box"-Sequenz in deren Promotorregionen. In der Umgebung der mbm-Transkriptionsstartstelle befinden sich zwei „E-Box"-Motive. Mit Hilfe von Genreporteranalysen konnte nachgewiesen werden, dass nur eine von ihnen die dMyc-abh{\"a}ngige Transkription vermittelt. Die dMyc-abh{\"a}ngige Expression von Mbm konnte auch in Neuroblasten verifiziert werden. Auf posttranslationaler Ebene wird Mbm durch die Proteinkinase CK2 phosphoryliert. In der C-terminalen H{\"a}lfte des Mbm Proteins wurden in zwei Clustern mit einer Abfolge von sauren Aminos{\"a}uren sechs Serin- und Threoninreste als CK2- Phosphorylierungsstellen identifiziert. Eine Mutationsanalyse dieser Stellen best{\"a}tigte deren Bedeutung f{\"u}r die Mbm Funktion in vivo. Weiterhin ergaben sich Evidenzen, dass die Mbm-Lokalisierung durch die CK2-vermittelte Phosphorylierung gesteuert wird. Obwohl die genaue molekulare Funktion von Mbm in der Ribosomenbiogenese noch im Unklaren ist, unterstreichen die Ergebnisse dieser Studie die besondere Rolle von Mbm in der Ribosomenbiogenese von Neuroblasten um Zellwachstum und Proliferation zu regulieren.}, subject = {Taufliege}, language = {en} } @article{DapergolaMenegazziRaabeetal.2021, author = {Dapergola, Eleni and Menegazzi, Pamela and Raabe, Thomas and Hovhanyan, Anna}, title = {Light Stimuli and Circadian Clock Affect Neural Development in Drosophila melanogaster}, series = {Frontiers in Cell and Developmental Biology}, volume = {9}, journal = {Frontiers in Cell and Developmental Biology}, issn = {2296-634X}, doi = {10.3389/fcell.2021.595754}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231049}, year = {2021}, abstract = {Endogenous clocks enable organisms to adapt cellular processes, physiology, and behavior to daily variation in environmental conditions. Metabolic processes in cyanobacteria to humans are under the influence of the circadian clock, and dysregulation of the circadian clock causes metabolic disorders. In mouse and Drosophila, the circadian clock influences translation of factors involved in ribosome biogenesis and synchronizes protein synthesis. Notably, nutrition signals are mediated by the insulin receptor/target of rapamycin (InR/TOR) pathways to regulate cellular metabolism and growth. However, the role of the circadian clock in Drosophila brain development and the potential impact of clock impairment on neural circuit formation and function is less understood. Here we demonstrate that changes in light stimuli or disruption of the molecular circadian clock cause a defect in neural stem cell growth and proliferation. Moreover, we show that disturbed cell growth and proliferation are accompanied by reduced nucleolar size indicative of impaired ribosomal biogenesis. Further, we define that light and clock independently affect the InR/TOR growth regulatory pathway due to the effect on regulators of protein biosynthesis. Altogether, these data suggest that alterations in InR/TOR signaling induced by changes in light conditions or disruption of the molecular clock have an impact on growth and proliferation properties of neural stem cells in the developing Drosophila brain.}, language = {en} } @article{BeckHovhanyanMenegazzietal.2018, author = {Beck, Katherina and Hovhanyan, Anna and Menegazzi, Pamela and Helfrich-F{\"o}rster, Charlotte and Raabe, Thomas}, title = {Drosophila RSK Influences the Pace of the Circadian Clock by Negative Regulation of Protein Kinase Shaggy Activity}, series = {Frontiers in Molecular Neuroscience}, volume = {11}, journal = {Frontiers in Molecular Neuroscience}, number = {122}, issn = {1662-5099}, doi = {10.3389/fnmol.2018.00122}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196034}, year = {2018}, abstract = {Endogenous molecular circadian clocks drive daily rhythmic changes at the cellular, physiological, and behavioral level for adaptation to and anticipation of environmental signals. The core molecular system consists of autoregulatory feedback loops, where clock proteins inhibit their own transcription. A complex and not fully understood interplay of regulatory proteins influences activity, localization and stability of clock proteins to set the pace of the clock. This study focuses on the molecular function of Ribosomal S6 Kinase (RSK) in the Drosophila melanogaster circadian clock. Mutations in the human rsk2 gene cause Coffin-Lowry syndrome, which is associated with severe mental disabilities. Knock-out studies with Drosophila ortholog rsk uncovered functions in synaptic processes, axonal transport and adult behavior including associative learning and circadian activity. However, the molecular targets of RSK remain elusive. Our experiments provide evidence that RSK acts in the key pace maker neurons as a negative regulator of Shaggy (SGG) kinase activity, which in turn determines timely nuclear entry of the clock proteins Period and Timeless to close the negative feedback loop. Phosphorylation of serine 9 in SGG is mediated by the C-terminal kinase domain of RSK, which is in agreement with previous genetic studies of RSK in the circadian clock but argues against the prevailing view that only the N-terminal kinase domain of RSK proteins carries the effector function. Our data provide a mechanistic explanation how RSK influences the molecular clock and imply SGG S9 phosphorylation by RSK and other kinases as a convergence point for diverse cellular and external stimuli.}, language = {en} }