@phdthesis{Drescher2011, author = {Drescher, Jochen}, title = {The Ecology and Population structure of the invasive Yelllow Crazy Ant Anoplolepis gracilipes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-57332}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {The invasive Yellow Crazy Ant Anoplolepis gracilipes is a widespread tropical ant species which is particularly common in anthropogenically disturbed habitats in South-East Asia and the Indopacific region. Its native range is unknown, and there is little information concerning its social structure as a potential mechanism facilitating invasion as well as its ecology in one of the putative native ranges, South-East Asia. Using mitochondrial DNA sequences, I demonstrated that the majority of the current Indopacific colonies were likely introduced from South-East Asian populations, which in turn may have been introduced much earlier from a yet unidentified native range. By conducting behavioral, genetic and chemical analyses, I found that A. gracilipes supercolonies contain closely related individuals, thus resembling enlarged versions of monogynous, polydomous colonies of other ant species. Furthermore, mutually aggressive A. gracilipes supercolonies were highly differentiated both genetically and chemically, suggesting limited or even absent gene flow between supercolonies. Intranidal mating and colony-budding are most likely the predominant, if not the exclusive mode of reproduction and dispersal strategy of A. gracilipes. Consequently, a positive feedback between genetic, chemical and behavioral traits may further enhance supercolony differentiation though genetic drift and neutral evolution. This potential scenario led to the hypothesis that absent gene flow between different A. gracilipes supercolonies may drive them towards different evolutionary pathways, possibly including speciation. Thus, I examined one potential way by which gene flow between supercolonies of an ant species without nuptial flights may be maintained, i.e. the immigration of sexuals into foreign supercolonies. The results suggest that this option of maintaining gene flow between different supercolonies is likely impaired by severe aggression of workers towards allocolonial sexuals. Moreover, breeding experiments involving males and queens from different supercolonies suggest that A. gracilipes supercolonies may already be on the verge of reproductive isolation, which might lead to the diversification of A. gracilipes into different species. Regarding the ecological consequences of its potential introduction to NE-Borneo, I could show that A. gracilipes supercolonies may affect the local ant fauna. The ant community within supercolonies was less diverse and differed in species composition from areas outside supercolonies. My data suggest that the ecological dominance of A. gracilipes within local ant communities was facilitated by monopolization of food sources within its supercolony territory, achieved by a combination of rapid recruitment, numerical dominance and pronounced interspecific aggression. A. gracilipes' distribution is almost exclusively limited to anthropogenically altered habitat, such as residential and agricultural areas. The rate at which habitat conversion takes place in NE-Borneo will provide A. gracilipes with a rapidly increasing abundance of suitable habitats, thus potentially entailing significant population growth. An potentially increasing population size and ecological dominance, however, are not features that are limited to invasive alien species, but may also occur in native species that become 'pests' in an increasing abundance of anthropogenically altered habitat. Lastly, I detected several ant guests in supercolonies of A. gracilipes. I subsequently describe the relationship between one of them (the cricket Myrmecophilus pallidithorax) and its ant host. By conducting behavioral bioassays and analyses of cuticular hydrocarbon (CHC) profiles, I revealed that although M. pallidithorax is attacked and consumed by A. gracilipes whenever possible, it may evade aggression from its host by a combination of supreme agility and, possibly, chemical deception. This thesis adds to our general understanding of biological invasions by contributing species-specific data on a previously understudied invasive organism, the Yellow Crazy Ant Anoplolepis gracilipes. Introductions which may have occurred a long time ago may make it difficult to determine whether a given species is an introduced invader or a native pest species, as both may have pronounced ecological effects in native species communities. Furthermore, this thesis suggests that supercolonialism in invasive ants may not be an evolutionary dead end, but that it may possibly give rise to new species due to reproductive boundaries between supercolonies evoked by peculiar mating and dispersal strategies.}, subject = {Dem{\"o}kologie}, language = {en} } @phdthesis{Shityakov2011, author = {Shityakov, Sergey}, title = {Molecular modelling and simulation of retroviral proteins and nanobiocomposites}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-56960}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Molecular modelling and simulation are powerful methods in providing important in-formation on different biological systems to elucidate their structural and functional proper-ties, which cannot be determined in experiment. These methods are applied to analyse versa-tile biological systems: lipid membrane bilayers stabilized by an intercalated single wall carbon nanotube and retroviral proteins such as HIV protease and integrase. HIV-1 integrase has nuclear localization signals (NLS) which play a crucial role in nuclear import of viral preintegration complex (PIC). However, the detailed mechanisms of PIC formation and its nuclear transport are not known. Previously it was shown that NLSs bind to the cell transport machinery e.g. proteins of nuclear pore complex such as transportins. I investigated the interaction of this viral protein HIV-1 integrase with proteins of the nuclear pore complex such as transportin-SR2 (Shityakov et al., 2010). I showed that the transportin-SR2 in nuclear import is required due to its interaction with the HIV-1 integrase. I analyzed key domain interaction, and hydrogen bond formation in transportin-SR2. These results were discussed in comparison to other retroviral species such as foamy viruses to better understand this specific and efficient retroviral trafficking route. The retroviral nuclear import was next analyzed in experiments regarding the retroviral ability to infect nondividing cells. To accomplish the gene transfer task successfully, ret-roviruses must efficiently transduce different cell cultures at different phases of cell cycle. However, promising and safe foamy viral vectors used for gene transfer are unable to effi-ciently infect quiescent cells. This drawback was due to their inability to create a preintegra-tion complex (PIC) for nuclear import of retroviral DNA. On the contrary, the lentiviral vec-tors are not dependant on cell cycle. In the course of reverse transcription the polypurine tract (PPT) is believed to be crucial for PIC formation. In this thesis, I compared the transduction frequencies of PPT modified FV vectors with lentiviral vectors in nondividing and dividing alveolar basal epithelial cells from human adenocarcinoma (A549) by using molecular cloning, transfection and transduction techniques and several other methods. In contrast to lentiviral vectors, FV vectors were not able to effi-ciently transduce nondividing cell (Shityakov and Rethwilm, unpublished data). Despite the findings, which support the use of FV vectors as a safe and efficient alternative to lentiviral vectors, major limitation in terms of foamy-based retroviral vector gene transfer in quiescent cells still remains. Many attempts have been made recently to search for the potential molecules as pos-sible drug candidates to treat HIV infection for over decades now. These molecules can be retrieved from chemical libraries or can be designed on a computer screen and then synthe-sized in a laboratory. Most notably, one could use the computerized structure as a reference to determine the types of molecules that might block the enzyme. Such structure-based drug design strategies have the potential to save off years and millions of dollars compared to a more traditional trial-and-error drug development process. After the crystal structure of the HIV-encoded protease enzyme had been elucidated, computer-aided drug design played a pivotal role in the development of new compounds that inhibit this enzyme which is responsible for HIV maturation and infectivity. Promising repre-sentatives of these compounds have recently found their way to patients. Protease inhibitors show a powerful sustained suppression of HIV-1 replication, especially when used in combi-nation therapy regimens. However, these drugs are becoming less effective to more resistant HIV strains due to multiple mutations in the retroviral proteases. In computational drug design I used molecular modelling methods such as lead ex-pansion algorithm (Tripos®) to create a virtual library of compounds with different binding affinities to protease binding site. In addition, I heavily applied computer assisted combinato-rial chemistry approaches to design and optimize virtual libraries of protease inhibitors and performed in silico screening and pharmacophore-similarity scoring of these drug candidates. Further computational analyses revealed one unique compound with different protease bind-ing ability from the initial hit and its role for possible new class of protease inhibitors is dis-cussed (Shityakov and Dandekar, 2009). A number of atomistic models were developed to elucidate the nanotube behaviour in lipid bilayers. However, none of them provided useful information for CNT effect upon the lipid membrane bilayer for implementing all-atom models that will allow us to calculate the deviations of lipid molecules from CNT with atomistic precision. Unfortunately, the direct experimental investigation of nanotube behaviour in lipid bilayer remains quite a tricky prob-lem opening the door before the molecular simulation techniques. In this regard, more de-tailed multi-scale simulations are needed to clearly understand the stabilization characteristics of CNTs in hydrophobic environment. The phenomenon of an intercalated single-wall carbon nanotube in the center of lipid membrane was extensively studied and analyzed. The root mean square deviation and root mean square fluctuation functions were calculated in order to measure stability of lipid mem-branes. The results indicated that an intercalated carbon nanotube restrains the conformational freedom of adjacent lipids and hence has an impact on the membrane stabilization dynamics (Shityakov and Dandekar, 2011). On the other hand, different lipid membranes may have dissimilarities due to the differing abilities to create a bridge formation between the adherent lipid molecules. The results derived from this thesis will help to develop stable nanobiocom-posites for construction of novel biomaterials and delivery of various biomolecules for medi-cine and biology.}, subject = {Kohlenstoff}, language = {en} } @phdthesis{Goeb2011, author = {G{\"o}b, Eva}, title = {Die Kernh{\"u}lle in Keimzellen: Strukturelle Besonderheiten, dynamische Prozesse und die Umgestaltung des Zellkerns w{\"a}hrend der Spermatogenese der Maus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-56839}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Die Kernh{\"u}lle umgibt als geschlossenes Membransystem einen jeden Zellkern und ist damit ein gemeinsames Merkmal aller eukaryotischen Zellen. Sie besteht aus einer inneren und einer {\"a}ußeren Kernmembran sowie der nukleoplasmatischen Kernlamina, die aufgrund zahlreicher assoziierter Proteine in enger Wechselbeziehung mit der inneren Kernmembran steht. Neben der rein r{\"a}umlichen Trennung nukle{\"a}rer und zytoplasmatischer Strukturen hat die Kernh{\"u}lle bedeutenden regulatorischen Einfluss auf die gesamte Zelle. So ist sie unter anderem an der Steuerung der genomischen Aktivit{\"a}t, an der nukleo- und zytoplasmatischen Signal{\"u}bertragung und in hohem Maße an der Positionierung und Formerhaltung des Zellkerns beteiligt. Es mehren sich die Hinweise, dass die Kernh{\"u}lle auch w{\"a}hrend der Gametogenese, der Differenzierung befruchtungsf{\"a}higer Keimzellen, eine zentrale Rolle einnimmt und folglich auch mit bislang ungekl{\"a}rten Ursachen humaner Infertilit{\"a}t in Kontext stehen k{\"o}nnte. Um die Bedeutung der Kernh{\"u}lle f{\"u}r die Keimbahn der S{\"a}uger generell besser verstehen zu k{\"o}nnen, wurden in dieser Arbeit ausgew{\"a}hlte Bestandteile der Keimzellkernh{\"u}lle untersucht. Dadurch sollte der Kenntnisstand erweitert werden, in welcher Weise die Kernh{\"u}lle dynamische, morphologische und vor allem f{\"u}r die Keimbahn essentielle Prozesse beeinflusst; insbesondere w{\"a}hrend der meiotischen und der postmeiotischen Differenzierungsphase bei m{\"a}nnlichen M{\"a}usen. Im Mittelpunkt stand dabei einerseits Lamin C2, ein meiosespezifisches A-Typ Lamin, dessen Verlust zu einer schwer gesch{\"a}digten Meiose und infolgedessen zu vollst{\"a}ndiger m{\"a}nnlicher Infertilit{\"a}t f{\"u}hrt. Es zeigte sich, dass Lamin C2-defiziente m{\"a}nnliche M{\"a}use schwerwiegende Defekte bei der Paarung und Synapsis der homologen Chromosomen in der meiotischen Prophase I aufweisen und aufgrund apoptotischer Spermatocyten keine reifen Spermien bilden k{\"o}nnen. Es wird angenommen, dass die Assoziation homologer Chromosomen bzw. die Abstoßung nicht-homologer durch gerichtete Telomerbewegungen entlang der Kernh{\"u}llenperipherie vorangetrieben bzw. verhindert wird. Da Lamin C2 seinerseits diese Wanderung der Telomere durch eine Flexibilisierung der Spermatocytenkernh{\"u}lle vereinfachen soll, ist es durchaus vorstellbar, dass sein Verlust verlangsamte Telomerbewegungen, eine gest{\"o}rte Homologenfindung und folglich Fehlpaarungen zur Folge hat. Ein weiteres zentrales Thema war die Erforschung potentieller LINC-Komplexe w{\"a}hrend der Differenzierungs- und morphologischen Umgestaltungsphase postmeiotischer Keimzellen. LINC-Komplexe sind kernh{\"u}llendurchspannende Proteingebilde aus SUN-Proteinen in der inneren und Nesprinen in der {\"a}ußeren Kernmembran, die nukle{\"a}re Strukturen an das Zytoskelett binden. Da sie aufgrund dieser strukturellen Eigenschaft die Kernmorphologie beeinflussen k{\"o}nnen, erscheinen sie als {\"a}ußerst geeignet, an der Formierung des Spermienkopfes beteiligt zu sein. Die detaillierte Untersuchung spermiogeneserelevanter LINC-Komplex-Bestandteile ergab, dass w{\"a}hrend der Spermiogenese tats{\"a}chlich zwei neue, strukturell einzigartige LINC-Komplexe gebildet werden, die dar{\"u}ber hinaus auf den entgegengesetzten Seiten differenzierender Spermatiden polarisieren. Da sie den Kern dort an jeweils spezielle Zytoskelettelemente binden k{\"o}nnten, wurde in dieser Arbeit das Modell der LINC-Komplex vermittelten Umformung des Spermienkopfes aufgestellt. Insgesamt tr{\"a}gt diese Arbeit durch die funktionelle Analyse von Lamin C2 und die Identifizierung neuer LINC-Komplexe dazu bei, die Wichtigkeit der Kernh{\"u}lle f{\"u}r die Spermatogenese zu vertiefen und auszuweiten.}, subject = {Spermatogenese}, language = {de} }