@article{ZupancRoessler2022, author = {Zupanc, G{\"u}nther K. H. and R{\"o}ssler, Wolfgang}, title = {Government funding of research beyond biomedicine: challenges and opportunities for neuroethology}, series = {Journal of Comparative Physiology A}, volume = {208}, journal = {Journal of Comparative Physiology A}, number = {3}, doi = {10.1007/s00359-022-01552-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325113}, pages = {443-456}, year = {2022}, abstract = {Curiosity-driven research is fundamental for neuroethology and depends crucially on governmental funding. Here, we highlight similarities and differences in funding of curiosity-driven research across countries by comparing two major funding agencies—the National Science Foundation (NSF) in the United States and the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG). We interviewed representatives from each of the two agencies, focusing on general funding trends, levels of young investigator support, career-life balance, and international collaborations. While our analysis revealed a negative trend in NSF funding of biological research, including curiosity-driven research, German researchers in these areas have benefited from a robust positive trend in DFG funding. The main reason for the decrease in curiosity-driven research in the US is that the NSF has only partially been able to compensate for the funding gap resulting from the National Institutes of Health restricting their support to biomedical research using select model organisms. Notwithstanding some differences in funding programs, particularly those relevant for scientists in the postdoctoral phase, both the NSF and DFG clearly support curiosity-driven research.}, language = {en} } @article{ZoltnerKrienitzFieldetal.2018, author = {Zoltner, Martin and Krienitz, Nina and Field, Mark C. and Kramer, Susanne}, title = {Comparative proteomics of the two T. brucei PABPs suggests that PABP2 controls bulk mRNA}, series = {PLoS Neglected Tropical Diseases}, volume = {12}, journal = {PLoS Neglected Tropical Diseases}, number = {7}, doi = {10.1371/journal.pntd.0006679}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177126}, pages = {e0006679}, year = {2018}, abstract = {Poly(A)-binding proteins (PABPs) regulate mRNA fate by controlling stability and translation through interactions with both the poly(A) tail and eIF4F complex. Many organisms have several paralogs of PABPs and eIF4F complex components and it is likely that different eIF4F/PABP complex combinations regulate distinct sets of mRNAs. Trypanosomes have five eIF4G paralogs, six of eIF4E and two PABPs, PABP1 and PABP2. Under starvation, polysomes dissociate and the majority of mRNAs, most translation initiation factors and PABP2 reversibly localise to starvation stress granules. To understand this more broadly we identified a protein interaction cohort for both T. brucei PABPs by cryo-mill/affinity purification-mass spectrometry. PABP1 very specifically interacts with the previously identified interactors eIF4E4 and eIF4G3 and few others. In contrast PABP2 is promiscuous, with a larger set of interactors including most translation initiation factors and most prominently eIF4G1, with its two partners TbG1-IP and TbG1-IP2. Only RBP23 was specific to PABP1, whilst 14 RNA-binding proteins were exclusively immunoprecipitated with PABP2. Significantly, PABP1 and associated proteins are largely excluded from starvation stress granules, but PABP2 and most interactors translocate to granules on starvation. We suggest that PABP1 regulates a small subpopulation of mainly small-sized mRNAs, as it interacts with a small and distinct set of proteins unable to enter the dominant pathway into starvation stress granules and localises preferentially to a subfraction of small polysomes. By contrast PABP2 likely regulates bulk mRNA translation, as it interacts with a wide range of proteins, enters stress granules and distributes over the full range of polysomes.}, language = {en} } @article{ZoephelReiherRexeretal.2012, author = {Zoephel, Judith and Reiher, Wencke and Rexer, Karl-Heinz and Kahnt, J{\"o}rg and Wegener, Christian}, title = {Peptidomics of the Agriculturally Damaging Larval Stage of the Cabbage Root Fly Delia radicum (Diptera: Anthomyiidae)}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {7}, doi = {10.1371/journal.pone.0041543}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131727}, pages = {e41543}, year = {2012}, abstract = {The larvae of the cabbage root fly induce serious damage to cultivated crops of the family Brassicaceae. We here report the biochemical characterisation of neuropeptides from the central nervous system and neurohemal organs, as well as regulatory peptides from enteroendocrine midgut cells of the cabbage maggot. By LC-MALDI-TOF/TOF and chemical labelling with 4-sulfophenyl isothiocyanate, 38 peptides could be identified, representing major insect peptide families: allatostatin A, allatostatin C, FMRFamide-like peptides, kinin, CAPA peptides, pyrokinins, sNPF, myosuppressin, corazonin, SIFamide, sulfakinins, tachykinins, NPLP1-peptides, adipokinetic hormone and CCHamide 1. We also report a new peptide (Yamide) which appears to be homolog to an amidated eclosion hormone-associated peptide in several Drosophila species. Immunocytochemical characterisation of the distribution of several classes of peptide-immunoreactive neurons and enteroendocrine cells shows a very similar but not identical peptide distribution to Drosophila. Since peptides regulate many vital physiological and behavioural processes such as moulting or feeding, our data may initiate the pharmacological testing and development of new specific peptide-based protection methods against the cabbage root fly and its larva.}, language = {en} } @article{ZirkelCecilSchaeferetal.2012, author = {Zirkel, J. and Cecil, A. and Sch{\"a}fer, F. and Rahlfs, S. and Ouedraogo, A. and Xiao, K. and Sawadogo, S. and Coulibaly, B. and Becker, K. and Dandekar, T.}, title = {Analyzing Thiol-Dependent Redox Networks in the Presence of Methylene Blue and Other Antimalarial Agents with RT-PCR-Supported in silico Modeling}, series = {Bioinformatics and Biology Insights}, volume = {6}, journal = {Bioinformatics and Biology Insights}, doi = {10.4137/BBI.S10193}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123751}, pages = {287-302}, year = {2012}, abstract = {BACKGROUND: In the face of growing resistance in malaria parasites to drugs, pharmacological combination therapies are important. There is accumulating evidence that methylene blue (MB) is an effective drug against malaria. Here we explore the biological effects of both MB alone and in combination therapy using modeling and experimental data. RESULTS: We built a model of the central metabolic pathways in P. falciparum. Metabolic flux modes and their changes under MB were calculated by integrating experimental data (RT-PCR data on mRNAs for redox enzymes) as constraints and results from the YANA software package for metabolic pathway calculations. Several different lines of MB attack on Plasmodium redox defense were identified by analysis of the network effects. Next, chloroquine resistance based on pfmdr/and pfcrt transporters, as well as pyrimethamine/sulfadoxine resistance (by mutations in DHF/DHPS), were modeled in silico. Further modeling shows that MB has a favorable synergism on antimalarial network effects with these commonly used antimalarial drugs. CONCLUSIONS: Theoretical and experimental results support that methylene blue should, because of its resistance-breaking potential, be further tested as a key component in drug combination therapy efforts in holoendemic areas.}, language = {en} } @article{ZimmermannStopper1986, author = {Zimmermann, U. and Stopper, Helga}, title = {Elektrofusion und Elektropermeabilisierung von Zellen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86865}, year = {1986}, abstract = {No abstract available.}, subject = {Elektrofusion}, language = {de} } @article{ZimmermannSubotaBatrametal.2017, author = {Zimmermann, Henriette and Subota, Ines and Batram, Christopher and Kramer, Susanne and Janzen, Christian J. and Jones, Nicola G. and Engstler, Markus}, title = {A quorum sensing-independent path to stumpy development in Trypanosoma brucei}, series = {PLoS Pathogens}, volume = {13}, journal = {PLoS Pathogens}, number = {4}, doi = {10.1371/journal.ppat.1006324}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158230}, pages = {e1006324}, year = {2017}, abstract = {For persistent infections of the mammalian host, African trypanosomes limit their population size by quorum sensing of the parasite-excreted stumpy induction factor (SIF), which induces development to the tsetse-infective stumpy stage. We found that besides this cell density-dependent mechanism, there exists a second path to the stumpy stage that is linked to antigenic variation, the main instrument of parasite virulence. The expression of a second variant surface glycoprotein (VSG) leads to transcriptional attenuation of the VSG expression site (ES) and immediate development to tsetse fly infective stumpy parasites. This path is independent of SIF and solely controlled by the transcriptional status of the ES. In pleomorphic trypanosomes varying degrees of ES-attenuation result in phenotypic plasticity. While full ES-attenuation causes irreversible stumpy development, milder attenuation may open a time window for rescuing an unsuccessful antigenic switch, a scenario that so far has not been considered as important for parasite survival.}, language = {en} } @article{ZielewskaBuettnerHeurichMuelleretal.2018, author = {Zielewska-B{\"u}ttner, Katarzyna and Heurich, Marco and M{\"u}ller, J{\"o}rg and Braunisch, Veronika}, title = {Remotely Sensed Single Tree Data Enable the Determination of Habitat Thresholds for the Three-Toed Woodpecker (Picoides tridactylus)}, series = {Remote Sensing}, volume = {10}, journal = {Remote Sensing}, number = {12}, issn = {2072-4292}, doi = {10.3390/rs10121972}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-197565}, year = {2018}, abstract = {Forest biodiversity conservation requires precise, area-wide information on the abundance and distribution of key habitat structures at multiple spatial scales. We combined airborne laser scanning (ALS) data with color-infrared (CIR) aerial imagery for identifying individual tree characteristics and quantifying multi-scale habitat requirements using the example of the three-toed woodpecker (Picoides tridactylus) (TTW) in the Bavarian Forest National Park (Germany). This bird, a keystone species of boreal and mountainous forests, is highly reliant on bark beetles dwelling in dead or dying trees. While previous studies showed a positive relationship between the TTW presence and the amount of deadwood as a limiting resource, we hypothesized a unimodal response with a negative effect of very high deadwood amounts and tested for effects of substrate quality. Based on 104 woodpecker presence or absence locations, habitat selection was modelled at four spatial scales reflecting different woodpecker home range sizes. The abundance of standing dead trees was the most important predictor, with an increase in the probability of TTW occurrence up to a threshold of 44-50 dead trees per hectare, followed by a decrease in the probability of occurrence. A positive relationship with the deadwood crown size indicated the importance of fresh deadwood. Remote sensing data allowed both an area-wide prediction of species occurrence and the derivation of ecological threshold values for deadwood quality and quantity for more informed conservation management.}, language = {en} } @article{ZieglerWeissSchmittetal.2017, author = {Ziegler, Sabrina and Weiss, Esther and Schmitt, Anna-Lena and Schlegel, Jan and Burgert, Anne and Terpitz, Ulrich and Sauer, Markus and Moretta, Lorenzo and Sivori, Simona and Leonhardt, Ines and Kurzai, Oliver and Einsele, Hermann and Loeffler, Juergen}, title = {CD56 Is a Pathogen Recognition Receptor on Human Natural Killer Cells}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {6138}, doi = {10.1038/s41598-017-06238-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170637}, year = {2017}, abstract = {Aspergillus (A.) fumigatus is an opportunistic fungal mold inducing invasive aspergillosis (IA) in immunocompromised patients. Although antifungal activity of human natural killer (NK) cells was shown in previous studies, the underlying cellular mechanisms and pathogen recognition receptors (PRRs) are still unknown. Using flow cytometry we were able to show that the fluorescence positivity of the surface receptor CD56 significantly decreased upon fungal contact. To visualize the interaction site of NK cells and A. fumigatus we used SEM, CLSM and dSTORM techniques, which clearly demonstrated that NK cells directly interact with A. fumigatus via CD56 and that CD56 is re-organized and accumulated at this interaction site time-dependently. The inhibition of the cytoskeleton showed that the receptor re-organization was an active process dependent on actin re-arrangements. Furthermore, we could show that CD56 plays a role in the fungus mediated NK cell activation, since blocking of CD56 surface receptor reduced fungal mediated NK cell activation and reduced cytokine secretion. These results confirmed the direct interaction of NK cells and A. fumigatus, leading to the conclusion that CD56 is a pathogen recognition receptor. These findings give new insights into the functional role of CD56 in the pathogen recognition during the innate immune response.}, language = {en} } @article{ZieglerMeyerOtteetal.2022, author = {Ziegler, Alice and Meyer, Hanna and Otte, Insa and Peters, Marcell K. and Appelhans, Tim and Behler, Christina and B{\"o}hning-Gaese, Katrin and Classen, Alice and Detsch, Florian and Deckert, J{\"u}rgen and Eardley, Connal D. and Ferger, Stefan W. and Fischer, Markus and Gebert, Friederike and Haas, Michael and Helbig-Bonitz, Maria and Hemp, Andreas and Hemp, Claudia and Kakengi, Victor and Mayr, Antonia V. and Ngereza, Christine and Reudenbach, Christoph and R{\"o}der, Juliane and Rutten, Gemma and Schellenberger Costa, David and Schleuning, Matthias and Ssymank, Axel and Steffan-Dewenter, Ingolf and Tardanico, Joseph and Tschapka, Marco and Vollst{\"a}dt, Maximilian G. R. and W{\"o}llauer, Stephan and Zhang, Jie and Brandl, Roland and Nauss, Thomas}, title = {Potential of airborne LiDAR derived vegetation structure for the prediction of animal species richness at Mount Kilimanjaro}, series = {Remote Sensing}, volume = {14}, journal = {Remote Sensing}, number = {3}, issn = {2072-4292}, doi = {10.3390/rs14030786}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-262251}, year = {2022}, abstract = {The monitoring of species and functional diversity is of increasing relevance for the development of strategies for the conservation and management of biodiversity. Therefore, reliable estimates of the performance of monitoring techniques across taxa become important. Using a unique dataset, this study investigates the potential of airborne LiDAR-derived variables characterizing vegetation structure as predictors for animal species richness at the southern slopes of Mount Kilimanjaro. To disentangle the structural LiDAR information from co-factors related to elevational vegetation zones, LiDAR-based models were compared to the predictive power of elevation models. 17 taxa and 4 feeding guilds were modeled and the standardized study design allowed for a comparison across the assemblages. Results show that most taxa (14) and feeding guilds (3) can be predicted best by elevation with normalized RMSE values but only for three of those taxa and two of those feeding guilds the difference to other models is significant. Generally, modeling performances between different models vary only slightly for each assemblage. For the remaining, structural information at most showed little additional contribution to the performance. In summary, LiDAR observations can be used for animal species prediction. However, the effort and cost of aerial surveys are not always in proportion with the prediction quality, especially when the species distribution follows zonal patterns, and elevation information yields similar results.}, language = {en} } @article{ZhuShabalaCuinetal.2016, author = {Zhu, Min and Shabala, Lana and Cuin, Tracey A and Huang, Xin and Zhou, Meixue and Munns, Rana and Shabala, Sergey}, title = {Nax loci affect SOS1-like Na\(^{+}\)/H\(^{+}\) exchanger expression and activity in wheat}, series = {Journal of Experimental Botany}, volume = {67}, journal = {Journal of Experimental Botany}, number = {3}, doi = {10.1093/jxb/erv493}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-150236}, pages = {835-844}, year = {2016}, abstract = {Salinity stress tolerance in durum wheat is strongly associated with a plant's ability to control Na\(^{+}\) delivery to the shoot. Two loci, termed Nax1 and Nax2, were recently identified as being critical for this process and the sodium transporters HKT1;4 and HKT1;5 were identified as the respective candidate genes. These transporters retrieve Na\(^{+}\) from the xylem, thus limiting the rates of Na\(^{+}\) transport from the root to the shoot. In this work, we show that the Nax loci also affect activity and expression levels of the SOS1-like Na\(^{+}\)/H\(^{+}\) exchanger in both root cortical and stelar tissues. Net Na\(^{+}\) efflux measured in isolated steles from salt-treated plants, using the non-invasive ion flux measuring MIFE technique, decreased in the sequence: Tamaroi (parental line)>Nax1=Nax2>Nax1:Nax2 lines. This efflux was sensitive to amiloride (a known inhibitor of the Na\(^{+}\)/H\(^{+}\) exchanger) and was mirrored by net H\(^{+}\) flux changes. TdSOS1 relative transcript levels were 6-10-fold lower in Nax lines compared with Tamaroi. Thus, it appears that Nax loci confer two highly complementary mechanisms, both of which contribute towards reducing the xylem Na\(^{+}\) content. One enhances the retrieval of Na\(^{+}\) back into the root stele via HKT1;4 or HKT1;5, whilst the other reduces the rate of Na\(^{+}\) loading into the xylem via SOS1. It is suggested that such duality plays an important adaptive role with greater versatility for responding to a changing environment and controlling Na\(^{+}\) delivery to the shoot.}, language = {en} }