@article{KaluzaWallaceKelleretal.2017, author = {Kaluza, Benjamin F. and Wallace, Helen and Keller, Alexander and Heard, Tim A. and Jeffers, Bradley and Drescher, Nora and Bl{\"u}thgen, Nico and Leonhardt, Sara D.}, title = {Generalist social bees maximize diversity intake in plant species-rich and resource-abundant environments}, series = {Ecosphere}, volume = {8}, journal = {Ecosphere}, number = {3}, doi = {10.1002/ecs2.1758}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171155}, pages = {e01758}, year = {2017}, abstract = {Numerous studies revealed a positive relationship between biodiversity and ecosystem functioning, suggesting that biodiverse environments may not only enhance ecosystem processes, but also benefit individual ecosystem members by, for example, providing a higher diversity of resources. Whether and how the number of available resources affects resource collection and subsequently consumers (e.g., through impacting functions associated with resources) have, however, been little investigated, although a better understanding of this relationship may help explain why the abundance and richness of many animal species typically decline with decreasing plant (resource) diversity. Using a social bee species as model (Tetragonula carbonaria), we investigated how plant species richness—recorded for study sites located in different habitats—and associated resource abundance affected the diversity and functionality (here defined as nutritional content and antimicrobial activity) of resources (i.e., pollen, nectar, and resin) collected by a generalist herbivorous consumer. The diversity of both pollen and resin collected strongly increased with increasing plant/tree species richness, while resource abundance was only positively correlated with resin diversity. These findings suggest that bees maximize resource diversity intake in (resource) diverse habitats. Collecting more diverse resources did, however, not increase their functionality, which appeared to be primarily driven by the surrounding (plant) source community in our study. In generalist herbivores, maximizing resource diversity intake may therefore primarily secure collection of sufficient amounts of resources across the entire foraging season, but it also ensures that the allocated resources meet all functional needs. Decreasing available resource diversity may thus impact consumers primarily by reduced resource abundance, but also by reduced resource functionality, particularly when resources of high functionality (e.g., from specific plant species) become scarce.}, language = {en} } @article{FrickeRedlichZhangetal.2022, author = {Fricke, Ute and Redlich, Sarah and Zhang, Jie and Tobisch, Cynthia and Rojas-Botero, Sandra and Benjamin, Caryl S. and Englmeier, Jana and Ganuza, Cristina and Riebl, Rebekka and Uhler, Johannes and Uphus, Lars and Ewald, J{\"o}rg and Kollmann, Johannes and Steffan-Dewenter, Ingolf}, title = {Plant richness, land use and temperature differently shape invertebrate leaf-chewing herbivory on plant functional groups}, series = {Oecologia}, volume = {199}, journal = {Oecologia}, number = {2}, doi = {10.1007/s00442-022-05199-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325079}, pages = {407-417}, year = {2022}, abstract = {Higher temperatures can increase metabolic rates and carbon demands of invertebrate herbivores, which may shift leaf-chewing herbivory among plant functional groups differing in C:N (carbon:nitrogen) ratios. Biotic factors influencing herbivore species richness may modulate these temperature effects. Yet, systematic studies comparing leaf-chewing herbivory among plant functional groups in different habitats and landscapes along temperature gradients are lacking. This study was conducted on 80 plots covering large gradients of temperature, plant richness and land use in Bavaria, Germany. We investigated proportional leaf area loss by chewing invertebrates ('herbivory') in three plant functional groups on open herbaceous vegetation. As potential drivers, we considered local mean temperature (range 8.4-18.8 °C), multi-annual mean temperature (range 6.5-10.0 °C), local plant richness (species and family level, ranges 10-51 species, 5-25 families), adjacent habitat type (forest, grassland, arable field, settlement), proportion of grassland and landscape diversity (0.2-3 km scale). We observed differential responses of leaf-chewing herbivory among plant functional groups in response to plant richness (family level only) and habitat type, but not to grassland proportion, landscape diversity and temperature—except for multi-annual mean temperature influencing herbivory on grassland plots. Three-way interactions of plant functional group, temperature and predictors of plant richness or land use did not substantially impact herbivory. We conclude that abiotic and biotic factors can assert different effects on leaf-chewing herbivory among plant functional groups. At present, effects of plant richness and habitat type outweigh effects of temperature and landscape-scale land use on herbivory among legumes, forbs and grasses.}, language = {en} }