@phdthesis{Endlein2007, author = {Endlein, Thomas}, title = {Haftung und Fortbewegung: Kontrollmechanismen von Adh{\"a}sionskr{\"a}ften bei Ameisen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-28985}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Nat{\"u}rliche Haftsysteme {\"u}bertreffen technische Kleber in mehreren Aspekten: Sie haften auf nahezu allen Oberfl{\"a}chen, sind selbstreinigend und sind in ihrer Haftst{\"a}rke dynamisch kontrollierbar. F{\"u}r Tiere mit Haftorganen ist deren Kontrolle eine Grundvoraussetzung f{\"u}r effiziente Lokomotion. Wie k{\"o}nnen Tiere gut an Oberfl{\"a}chen haften und gleichzeitig schnell laufen? Wie werden Haftorgane kontrolliert, um auf rauen oder glatten Oberfl{\"a}chen senkrecht oder kopf{\"u}ber zu haften und wieder loszulassen? Die vorliegende Arbeit untersucht am Beispiel vonWeberameisen (Oecophylla smaragdina), welche Kontrollmechanismen Insekten verwenden, um den Konflikt zwischen Haftung und Fortbewegung zu bew{\"a}ltigen. Weberameisen besitzen an ihren F{\"u}ßen zwischen den Krallen ein entfaltbares Haftorgan (Arolium), welches im Vergleich zu anderen Hymenopteren stark vergr{\"o}ßert ist. Ihre enormen Haftkr{\"a}fte (mehr als das 100-fache ihres K{\"o}rpergewichtes) werden haupts{\"a}chlich eingesetzt, um Bl{\"a}tter f{\"u}r ihren Nestbau in den Baumkronen zusammenzuziehen. Sie sind Meister der Haftung und gute L{\"a}ufer zugleich und eigneten sich daher sehr gut als Modellsystem. In der Arbeit wurde dieWechselwirkung von Haftung und Bewegung auf mehreren hierarchischen Ebenen untersucht, vom gesamten K{\"o}rper {\"u}ber die Beine bis zum Haftorgan selbst. Es zeigte sich, dass Kontrollmechanismen auf allen drei Ebenen vorliegen. Im ersten Teil der Arbeit wurde durch Manipulationen an der Krallenziehersehne die komplexe innere Mechanik des Pr{\"a}tarsus aufgekl{\"a}rt. Es zeigte sich, dass die Bewegungen von Tarsus, Krallen und Arolium in einer koordinierten Reihenfolge erfolgten. Durch Amputationen der Krallenspitzen an lebenden Ameisen konnte best{\"a}tigt werden, dass die Entfaltung des Aroliums durch das Verhaken der Krallen auf rauen Oberfl{\"a}chen mechanisch eingeschr{\"a}nkt wird. Der Einsatz des Aroliums war auch abh{\"a}ngig von der Oberfl{\"a}chenorientierung. Weberameisen setzten ihr Haftorgan beim aufrechten Laufen {\"u}berhaupt nicht ein, beim Kopf{\"u}berlaufen auf glatten Oberfl{\"a}chen wurde dagegen nur ein Bruchteil der maximal m{\"o}glichen Haftkontaktfl{\"a}che entfaltet. Die Versuche zeigten, dass Ameisen die Entfaltung des Aroliums entweder aktiv, d. h. durch Kontraktion des Krallenziehermuskels, oder passiv durch Zugbewegungen des Tarsus graduell variieren. Beide Mechanismen werden von den Ameisen verwendet, um die ansonsten klein gehaltene Haftkontaktfl{\"a}che bei Bedarf (z. B. bei Zusatzbeladungen) zu vergr{\"o}ßern. Die passive Entfaltung ist von der neuromuskul{\"a}ren Kontrolle entkoppelt und unterliegt somit nicht den Zeitverz{\"o}gerungen von Reflexreaktionen. Durch pl{\"o}tzliche laterale Verschiebung der Laufoberfl{\"a}che durch einen Stoß konnte eine schlagartige Ausfaltung der Arolien ausgel{\"o}st werden, die wesentlich schneller ablief als alle bekannten Reflexreaktionen. Dies kann als Sicherheitsmechanismus interpretiert werden, womit sich die Ameisen bei starken Ersch{\"u}tterungen der nat{\"u}rlichen Laufsubstrate (Bl{\"a}tter) durchWindst{\"o}ße oder Regentropfen festhalten k{\"o}nnen. Sowohl Kraftmessungen an der Krallenziehersehne, welche die Kontraktion des Krallenziehermuskels nachahmten als auch Reibungskraftmessungen zur passiven Entfaltung des Aroliums zeigten, dassWeberameisen im Vergleich zu einer bodenlebenden Ameise ihre Haftorgane leichter entfalten konnten. Dies erleichtert es ihnen, ihre Haftorgane {\"u}ber lange Zeit im entfalteten Zustand zu halten, wie es beispielsweise beim Nestbau erforderlich ist. Mit Hilfe von dreidimensionalen Kinematikstudien konnte gezeigt werden, dass Weberameisen durch {\"A}nderungen des Beinwinkels zur Oberfl{\"a}che das Sch{\"a}lverhalten der Haftorgane beeinflussen. Ein flacherer Winkel verhinderte das Absch{\"a}len der Haftorgane w{\"a}hrend der Standphase oder beim Tragen von Zusatzlasten; ein steilerer Tarsus hingegen erleichterte das Absch{\"a}len w{\"a}hrend der Abl{\"o}sephase. Dieses Verhalten wurde mit dem Modell eines Klebebandes verglichen. Allerdings ver{\"a}nderten sich die Haftkr{\"a}fte in einem bestimmten Winkelbereich deutlich st{\"a}rker, als die Sch{\"a}ltheorie es vorhersagen w{\"u}rde. Die starken Unterschiede in der Haftkraft an dieser Schwelle sind jedoch biologisch sinnvoll und werden wahrscheinlich von den Ameisen verwendet, um schnell zwischen Haften und L{\"o}sen zu wechseln. Messungen der Bodenreaktionskr{\"a}fte zeigten einen weiteren Abl{\"o}semechanismus: W{\"a}hrend der Abl{\"o}sephase wird durch distales Schieben des Beines das Haftorgan entlastet und so eine passive R{\"u}ckfaltung des Aroliums erlaubt. Beide Abl{\"o}semechanismen (Sch{\"a}len und Entlasten) wurden f{\"u}r einzelne Beinpaare im unterschiedlichen Ausmaß von den Ameisen verwendet. Eine Umorientierung zur Schwerkraftrichtung, z. B. beim Kopf{\"u}berlaufen, hatte auch Einfluss auf das Laufmuster und die Beinstellung relativ zum K{\"o}rperschwerpunkt. Die Ameisen passten beim Kopfx {\"u}berlaufen ihren Gang so an, dass sie mehrere Beine gleichzeitig in Bodenkontakt hielten und langsamere und k{\"u}rzere Schritte machten. Entstandene Drehmomente beim Tragen von Zusatzlasten wurden durch gezielte {\"A}nderungen der Beinpositionen ausgeglichen. Meine Arbeit zeigt, dass Insekten die Oberfl{\"a}chenhaftung auf verschiedenen hierarchischen Ebenen mit Hilfe verschiedener Anpassungen kontrollieren und dabei elegant neuromuskul{\"a}re Steuerungen mit rein passiven Mechanismen vereinigen. Die hier f{\"u}r Weberameisen exemplarisch untersuchten Effekte sind von allgemeiner Bedeutung f{\"u}r alle Tiere, die sich mit Hilfe von Haftorganen fortbewegen. Ein Verst{\"a}ndnis der Mechanismen, mit denen Insekten Haftung dynamisch kontrollieren, k{\"o}nnte wichtige Anregungen f{\"u}r die Entwicklung von kletterf{\"a}higen Laufrobotern liefern.}, subject = {Ameisen}, language = {de} } @phdthesis{Drechsler2008, author = {Drechsler, Patrick Hans}, title = {Mechanics of adhesion and friction in stick insects and tree frogs}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-26836}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Many arthropods and vertebrates can cling to surfaces using adhesive pads on their legs. These pads are either smooth and characterised by a specialised, soft cuticle or they are hairy, i.e. densely covered with flexible adhesive setae. Animals climbing with adhesive organs are able to control attachment and detachment dynamically while running. The detailed mechanisms of how tarsal pads generate adhesive and frictional forces and how forces are controlled during locomotion are still largely unclear. The aim of this study was to clarify the attachment mechanism of smooth adhesive pads as present in many insects and tree frogs. To understand the function of these fluid-based adhesive systems, I characterized their performance under standardized conditions. To this end, experiments were conducted by simultaneously measuring adhesion, friction, and contact area in single adhesive pads. The first result of this study showed that friction in stick insect attachment pads is anisotropic: Attachment pads regularly detached when slid away from the body. Further analyses of "immobilized" arolia revealed that this anisotropy is not caused by an increased shear stress in the proximal direction, but by the instability of the tarsus when pushed distally. In the second part of this study, I analysed the role of the pad secretion present in insects and tree frogs. In stick insects, shear stress was largely independent of normal force and increased with velocity, seemingly consistent with the viscosity effect of a continuous fluid film. However, measurements of the remaining force two minutes after a sliding movement showed that adhesive pads could sustain considerable static friction in insects and tree frogs. Repeated sliding movements and multiple consecutive pull-offs of stick insect single legs to deplete adhesive secretion showed that on a smooth surface, friction and adhesion strongly increased with decreasing amount of fluid in insects. In contrast, stick insect pull-off forces significantly decreased on a rough substrate. Thus, the secretion does not generally increase attachment but does so only on rough substrates, where it helps to maximize contact area. When slides with stick insect arolia were repeated at one position so that secretion could accumulate, sliding shear stress decreased but static friction remained clearly present. This suggests that static friction in stick insects, which is biologically important to prevent sliding, is based on non-Newtonian properties of the adhesive emulsion rather than on a direct contact between the cuticle and the substrate. \% Analogous measurements in toe pads of tree frogs showed that they are also able to generate static friction, even though their pads are wetted by mucus. In contrast to the mechanism proposed for insects, static friction in tree frogs apparently results from the very close contact of toe pads to the substrate and boundary lubrication. In the last section of this study, I investigated adhesive forces and the mode of detachment by performing pull-off measurements at different velocities and preloads. These experiments showed that preload has only an increasing effect on adhesion for faster pull-offs. This can be explained by the viscoelastic material properties of the stick insect arolium, which introduce a strong rate-dependence of detachment. During fast pull-offs, forces can spread over the complete area of contact, leading to forces scaling with area. In contrast, the pad material has sufficient time to withdraw elastically and peel during slow detachments. Under these conditions the adhesive force will concentrate on the circumference of the contact area, therefore scaling with a length, supporting models such as the peeling theory. The scaling of single-pad forces supported these conclusions, but large variation between pads of different stick insects did not allow statistically significant conclusions. In contrast, when detachment forces were quantified for whole insects using a centrifuge, forces scaled with pad contact area and not with length.}, subject = {Biomechanik}, language = {en} } @phdthesis{Bohn2007, author = {Bohn, Holger Florian}, title = {Biomechanik von Insekten-Pflanzen-Interaktionen bei Nepenthes-Kannenpflanzen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-26101}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Interaktionen zwischen Insekten und Pflanzen k{\"o}nnen auf chemischen oder mechanischen Faktoren beruhen. Mechanische Faktoren spielen eine besonders wichtige Rolle bei den Fallen karnivorer Pflanzen. Ziel dieser Arbeit war es, die Rolle mechanischer Faktoren in der Interaktion zwischen der Kannenpflanze Nepenthes bicalcarata und der Ameise Camponotus schmitzi aufzukl{\"a}ren, bei der Ameisen Gegenanpassungen zu spezialisierten pflanzlichen Fangstrukturen entwickelt haben. Im Rahmen meiner Arbeit habe ich mich mit den Fragen besch{\"a}ftigt, 1) welche Kannenstrukturen und welche Mechanismen f{\"u}r den Fang von Arthropoden wichtig sind und 2) welche speziellen Anpassungen C. schmitzi-Ameisen f{\"u}r das Leben auf ihrer karnivoren Wirtspflanze besitzen. Bisher wurde angenommen, dass Nepenthes-Kannen Tiere mit Hilfe von rutschigen Wachskristallschichten fangen. Ich konnte zeigen, dass ein weiterer, bisher unbekannter Fangmechanismus existiert, welcher auf speziellen Oberfl{\"a}cheneigenschaften des Kannenrandes (Peristom) und "Insekten-Aquaplaning" basiert. Das Peristom besitzt eine regelm{\"a}ßige Mikrostruktur, welche daf{\"u}r sorgt, dass die Oberfl{\"a}che vollst{\"a}ndig mit Wasser benetzbar ist, so dass sie bei feuchter Witterung von homogenen Fl{\"u}ssigkeitsfilmen {\"u}berzogen ist. Auf dem trockenen Peristom k{\"o}nnen Ameisen ohne Schwierigkeiten laufen und Nektar von den am inneren Peristomrand gelegenen Nektarien ernten. Wird die Oberfl{\"a}che aber beispielsweise durch Regen nass, rutschen die meisten Tiere ab und st{\"u}rzen in die Kanne. Messungen der Reibungskr{\"a}fte von Weberameisen (Oecophylla smaragdina) auf dem Peristom von N. bicalcarata zeigten, dass Fl{\"u}ssigkeitsfilme auf der Oberfl{\"a}che die Anhaftung der Haftorgane (Arolien) verhindern, und dass die Mikrostruktur des Peristoms auch den Einsatz der Krallen unterbindet. Versuche an Nepenthes alata zeigten dar{\"u}ber hinaus, dass dieser Fangmechanismus des Peristoms auch f{\"u}r Nepenthes-Arten mit wachsbereifter Kanneninnenwand essentiell, und die Wachsschicht eher f{\"u}r die Retention gefangener Tiere wichtig ist. Zur Analyse der {\"o}kologischen Auswirkungen des "Aquaplaning"-Fangmechanismus habe ich die Peristomfeuchte von Nepenthes rafflesiana var. typica-Kannen zeitgleich mit meteorologischen Daten im Feld kontinuierlich aufgezeichnet und mit Experimenten zur Beurteilung der Fangeffizienz der Kannen kombiniert. Die Ergebnisse dieser Versuche zeigen, dass die Kannen abh{\"a}ngig vom Befeuchtungsgrad des Peristoms zeitweise sehr effiziente Fallen mit Fangraten von 80\% sein k{\"o}nnen, w{\"a}hrend sie zu anderen Zeiten vollkommen ineffizient sind. Die Variation der Peristomfeuchte wird durch Regen, Kondensation und von den Peristomnektarien sezerniertem Nektar verursacht. Es ist zu vermuten, dass die nur zeitweise und unvorhersehbare Aktivierung der Nepenthes-Kannenfallen durch N{\"a}sse der Evolution von Vermeidungsstrategien bei Beutetieren entgegenwirkt. Im Rahmen der Untersuchungen, welche mechanischen Anpassungen C. schmitzi-Ameisen f{\"u}r das Leben auf N. bicalcarata besitzen habe ich mich auf die Fragen konzentriert, wie es den Ameisen gelingt den Peristom-Fangmechanismus zu umgehen und welche Anpassungen sie besitzen um in der Kannenfl{\"u}ssigkeit tauchend und schwimmend nach Nahrung zu suchen. Im Gegensatz zu generalistischen Arten st{\"u}rzen C. schmitzi-Ameisen auf dem nassen Peristom nicht ab. Durch selektive Manipulation der tarsalen Haftstrukturen konnte ich demonstrieren, dass die Arolien f{\"u}r die Peristomlauff{\"a}higkeit der C. schmitzi-Ameisen eine wesentliche Rolle spielen. F{\"u}r das Furagieren in der Kannenfl{\"u}ssigkeit verf{\"u}gen C. schmitzi-Ameisen {\"u}ber ein sich wiederholendes, stereotypes Verhaltensmuster, welches aus einer Unterwasserlauf- und einer Oberfl{\"a}chenschwimmphase besteht. Meine Untersuchungen dieses Verhaltensmusters zeigten, dass die Ameisen am Ende der Unterwasserlaufphase mit Hilfe ihres stets vorhandenen Auftriebs zur Fl{\"u}ssigkeitsoberfl{\"a}che aufsteigen. Dabei taucht ein Teil ihres Hinterleibs aus der Kannenfl{\"u}ssigkeit auf, was den Ameisen die Sauerstoffaufnahme aus der Luft erm{\"o}glicht. Nach dem Auftauchen schwimmen C. schmitzi-Ameisen mittels schneller Beinbewegungen an der Oberfl{\"a}che der Kannenfl{\"u}ssigkeit. Dabei {\"a}hnelt die Bewegungskoordination ihrer Beine dem bei Ameisen f{\"u}r die Fortbewegung an Land typischen Dreifußgang. Ein Vergleich der Kinematik von schwimmenden und laufenden C. schmitzi-Ameisen hat gezeigt, dass schwimmende Ameisen ihre Beine in der Schlagphase mit einer h{\"o}heren Winkelgeschwindigkeit als in der R{\"u}ckholphase bewegen, w{\"a}hrend dies bei den laufenden Tieren genau umgekehrt ist. Ferner strecken schwimmende Ameisen ihre Beine w{\"a}hrend der Schlagphase weiter aus als in der R{\"u}ckholphase, wohingegen laufende Ameisen in beiden Bewegungsphasen vergleichbare Beinradien aufweisen. Dies l{\"a}sst den Schluss zu, dass die Schwimmkinematik der C. schmitzi-Ameisen eine abgewandelte Form ihrer Laufkinematik darstellt, welche f{\"u}r die Erzeugung von Vortrieb im Wasser optimiert wurde.}, subject = {Biomechanik}, language = {de} } @phdthesis{Paul2001, author = {Paul, J{\"u}rgen}, title = {The Mouthparts of Ants}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-1179130}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {Ant mandible movements cover a wide range of forces, velocities and precision. The key to the versatility of mandible functions is the mandible closer muscle. In ants, this muscle is generally composed of distinct muscle fiber types that differ in morphology and contractile properties. Volume proportions of the fiber types are species-specific and correlate with feeding habits. Two biomechanical models explain how the attachment angles are optimized with respect to force and velocity output and how filament-attached fibers help to generate the largest force output from the available head capsule volume. In general, the entire mandible closer muscle is controlled by 10-12 motor neurons, some of which exclusively supply specific muscle fiber groups. Simultaneous recordings of muscle activity and mandible movement reveal that fast movements require rapid contractions of fast muscle fibers. Slow and accurate movements result from the activation of slow muscle fibers. Forceful movements are generated by simultaneous co-activation of all muscle fiber types. For fine control, distinct fiber bundles can be activated independently of each other. Retrograde tracing shows that most dendritic arborizations of the different sets of motor neurons share the same neuropil in the suboesophageal ganglion. In addition, some motor neurons invade specific parts of the neuropil. The labiomaxillary complex of ants is essential for food intake. I investigated the anatomical design of the labiomaxillary complex in various ant species focusing on movement mechanisms. The protraction of the glossa is a non muscular movement. Upon relaxation of the glossa retractor muscles, the glossa protracts elastically. I compared the design of the labiomaxillary complex of ants with that of the honey bee, and suggest an elastic mechanism for glossa protraction in honey bees as well. Ants employ two different techniques for liquid food intake, in which the glossa works either as a passive duct (sucking), or as an up- and downwards moving shovel (licking). For collecting fluids at ad libitum food sources, workers of a given species always use only one of both techniques. The species-specific feeding technique depends on the existence of a well developed crop and on the resulting mode of transporting the fluid food. In order to evaluate the performance of collecting liquids during foraging, I measured fluid intake rates of four ant species adapted to different ecological niches. Fluid intake rate depends on sugar concentration and the associated fluid viscosity, on the species-specific feeding technique, and on the extent of specialization on collecting liquid food. Furthermore, I compared the four ant species in terms of glossa surface characteristics and relative volumes of the muscles that control licking and sucking. Both probably reflect adaptations to the species-specific ecological niche and determine the physiological performance of liquid feeding. Despite species-specific differences, single components of the whole system are closely adjusted to each other according to a general rule.}, subject = {Ameisen}, language = {en} }