@phdthesis{Regneri2013, author = {Regneri, Janine}, title = {Transcriptional regulation of cancer genes in the Xiphophorus melanoma system}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-82319}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {The Xiphophorus melanoma system is a useful animal model for the study of the genetic basis of tumor formation. The development of hereditary melanomas in interspecific hybrids of Xiphophorus is connected to pigment cell specific overexpression of the mutationally activated receptor tyrosine kinase Xmrk. In purebred fish the oncogenic function of xmrk is suppressed by the molecularly still unidentified locus R. The xmrk oncogene was generated by a gene duplication event from the Xiphophorus egfrb gene and thereby has acquired a new 5' regulatory sequence, which has probably altered the transcriptional control of the oncogene. So far, the xmrk promoter region was still poorly characterized and the molecular mechanism by which R controls xmrk-induced melanoma formation in Xiphophorus still remained to be elucidated. To test the hypothesis that R controls melanoma development in Xiphophorus on the transcriptional level, the first aim of the thesis was to gain a deeper insight into the transcriptional regulation of the xmrk oncogene. To this end, a quantitative analysis of xmrk transcript levels in different Xiphophorus genotypes carrying either the highly tumorigenic xmrkB or the non-tumorigenic xmrkA allele was performed. I was able to demonstrate that expression of the tumorigenic xmrkB allele is strongly increased in malignant melanomas of R-free backcross hybrids compared to benign lesions, macromelanophore spots, and healthy skin. The expression level of the non-tumorigenic xmrkA allele, in contrast, is not influenced by the presence or absence of R. These findings strongly indicate that differential transcriptional regulation of the xmrk promoter triggers the tumorigenic potential of these xmrk alleles. To functionally characterize the xmrk promoter region, I established a luciferase assay using BAC clones containing the genomic regions where xmrk and egfrb are located for generation of reporter constructs. This approach showed for the first time a melanoma cell specific transcriptional activation of xmrkB by its flanking regions, thereby providing the first functional evidence that the xmrk oncogene is controlled by a pigment cell specific promoter region. Subsequent analysis of different deletion constructs of the xmrkB BAC reporter construct strongly indicated that the regulatory elements responsible for the tumor-inducing overexpression of xmrkB in melanoma cells are located within 67 kb upstream of the xmrk oncogene. Taken together, these data indicate that melanoma formation in Xiphophorus is regulated by a tight transcriptional control of the xmrk oncogene and that the R locus acts through this mechanism. As the identification of the R-encoded gene(s) is necessary to fully understand how melanoma formation in Xiphophorus is regulated, I furthermore searched for alternative R candidate genes in this study. To this end, three genes, which are located in the genomic region where R has been mapped, were evaluated for their potential to be a crucial constituent of the regulator locus R. Among these genes, I identified pdcd4a, the ortholog of the human tumor suppressor gene PDCD4, as promising new candidate, because this gene showed the expression pattern expected from the crucial tumor suppressor gene encoded at the R locus.}, subject = {Melanom}, language = {en} } @article{AdamMauelerSchartl1991, author = {Adam, Dieter and Maueler, Winfried and Schartl, Manfred}, title = {Transcriptional activation of the melanoma inducing Xmrk oncogene in Xiphophorus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-87584}, year = {1991}, abstract = {The melanoma inducing locus of Xiphophorus encodes a tumorigenic version of a novel putative receptor tyrosine kinase (Xmrk). To elucidate the mechanism of oncogenic activation of Xmrk, we compared the structure and expression of two oncogenic loci with the corresponding proto-oncogene. Only minor structural alterations were found to be specific for the oncogenic Xmrk genes. Marked overexpression of the oncogene transcripts in melanoma, which are approximately 1 kb shorter than the proto-oncogene transcript, correlates with the malignancy of the tumors. The tumor transcripts are derived from an alternative transcription start site that is used only in the oncogenic loci. Thus, oncogenic activation of the melanoma inducing Xmrk gene appears primarily to be due to novel transcriptional control and overexpression.}, subject = {Schwertk{\"a}rpfling}, language = {en} } @phdthesis{Schmitt2015, author = {Schmitt, Alexandra}, title = {Role of Peroxiredoxin 6 in human melanoma}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111465}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Peroxiredoxin 6 (PRDX6) is a bifunctional enzyme comprising a peroxidase and a Ca2+-independent phospholipase (iPLA2) activity. This renders the enzyme capable of detoxifying reactive oxygen species (ROS) and of catalyzing the liberation of arachidonic acid (AA) from cellular membranes. Released AA can be further metabolized to bioactive lipids including eicosanoids, which are involved in inflammation, cell growth, differentiation, invasion and proliferation. Human melanoma cells are often characterized by imbalances in both ROS and lipid levels, which can be generated by oncogenic signaling, altered metabolism or UV irradiation. In previous studies, a comparative proteome analysis of the Xiphophorus fish melanoma model revealed a strong upregulation of Prdx6 in benign and malignant lesions compared to healthy skin. As the Xiphophorus melanoma model displays in many respects molecular characteristics that are similar to human melanoma, I investigated the functional role of PRDX6 in human melanoma cells. The first part of the study deals with the regulation of PRDX6 in melanocytes and human melanoma cells. I could demonstrate that the protein level of PRDX6 was strongly enhanced by the induction of the EGFR orthologue Xmrk from the Xiphophorus fish as well as the human EGFR. The upregulation of PRDX6 was further shown to be mediated in a PI3K-dependent and ROS-independent manner. The main part of the thesis comprises the investigation of the functional role of PRDX6 in human melanoma cells as well as the analysis of the underlying mechanism. I could show that knockdown of PRDX6 enhanced the oxidative stress response and led to decreased proliferation of melanoma cells. This cell growth effect was mainly mediated by the iPLA2 activity of PRDX6. Under conditions of strongly enhanced oxidative stress, the peroxidase activity became also important for cellular proliferation. Furthermore, the anti-proliferative effect in cells with lowered PRDX6 levels was the result of reduced cellular AA content and the decrease in the activation of SRC family proteins. Similarly, supplementation with AA led to regeneration of SRC family kinase activity and to an improvement in the reduced proliferation after knockdown of PRDX6. Since AA can be further processed into the prostaglandin PGE2, which has a pro-tumorigenic function in some cancer types, I further examined whether this eicosanoid is involved in the proliferative function of PRDX6. In contrast to AA, PGE2 was not consistently required for melanoma proliferation. In summary, I could demonstrate that PRDX6 plays a major role in AA-dependent lipid signaling in melanoma cells and thereby regulates proliferation. Interestingly, the proliferation relevant iPLA2 activity can be pharmacologically targeted, and melanoma cell growth was clearly blocked by the inhibitor BEL. Thus, I could identify the phospholipase activity of PRDX6 as a new therapeutically interesting target for melanoma treatment.}, subject = {Melanom}, language = {en} } @phdthesis{Haydn2012, author = {Haydn, Johannes}, title = {Regulation of ERK1/2 signaling in melanoma}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85727}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Die Mechanismen in einer Zelle, die die Genexpression und somit den Stoffwechsel, das Wachstum und das gesamte Zellverhalten steuern, sind ebenso bedeutsam f{\"u}r das Verst{\"a}ndnis der grundlegenden Biologie einer lebenden Zelle wie f{\"u}r die Vorg{\"a}nge der Krebsentstehung. Dabei bilden hochvernetzte, und strikt regulierte Signaltransduktionswege die Basis f{\"u}r ein belastbares und zugleich hochflexibles regulatorisches Netzwerk. Die St{\"o}rung solcher Signalkaskaden kann zum einen urs{\"a}chlich aber auch modifizierend auf die Bildung von Tumoren wirken. Die von Rezeptortyrosinkinasen (RTK) und RAS abh{\"a}ngigen Signalwege, die zur Aktivierung von AKT und ERK1/2 f{\"u}hren, sind hierbei von besonderem Interesse f{\"u}r die Entstehung des malignen Melanoms. Mutationen in Komponenten dieser Wege (z.B. NRAS, BRAF oder PTEN), die die Signalst{\"a}rke erh{\"o}hen kommen in Melanomen sehr h{\"a}ufig vor. Im ersten Teil dieser Arbeit wurden die unterschiedlichen und vielf{\"a}ltigen Funktionen von MKP2, einem Feedbackregulator des ERK1/2-Weges, unter verschiedenen zellul{\"a}ren Rahmenbedingungen, untersucht. Des Weiteren wird eine Funktion des zum AP1-Komplex geh{\"o}renden FOSL1, einem unter transkriptioneller Kontrolle des ERK1/2-Weges stehendem Transkriptionsfaktors, hinsichtlich der Steuerung der Zell-Proliferation gezeigt. Weiterhin habe ich Aspekte der direkten pharmakologischen Inhibition des ERK1/2-Weges hinsichtlich ihres Effekts auf die Ausl{\"o}sung von Apoptose untersucht. Aufgrund der H{\"a}ufigkeit von Mutationen in Genen, die f{\"u}r Proteine des ERK1/2-Weges kodieren (z.B. NRASQ61K, BRAFV600E), gilt die Inhibition dieses Signalwegs als vielversprechende Strategie zur Behandlung des Melanoms. Auch wenn klinische Studien, die Inhibitoren f{\"u}r MEK oder RAF als Einzelmedikamente verwenden, bei mehrmonatiger Behandlung sehr erfolgreich sind, konnten so keine langfristigen Erfolge erzielt werden. Aus diesem Grund werden nun Kombinationstherapien, die einen Inhibitor des ERK1/2-Weges und eine weitere Form der Therapie kombinieren, untersucht. Der zweite Teil dieser Arbeit beschreibt, dass der spezifische MEK Inhibitor PD184352 Melanomzellen vor der Apoptosewirkung von Cisplatin sch{\"u}tzen kann. Einzelbehandlung mit Cisplatin f{\"u}hrt hierbei zur Akkumulation von DNA Sch{\"a}den, die wiederum Caspase-abh{\"a}ngig Apoptose induzieren. Zus{\"a}tzliche Anwendung des MEK Inhibitors verringerte jedoch in einigen Zelllinien das Potential von Cisplatin, Apoptose auszul{\"o}sen. Diese Zellen zeigten eine verst{\"a}rkte Aktivierung der Serin/Threonin-KInase AKT nach MEK Inhibition. Diese AKT Aktivierung f{\"u}hrte zur Inaktivierung der FOXO Transkriptionsfaktoren, was wiederum die Expression des pro-apoptotischen BH3-only Proteins PUMA verringerte. PUMA selbst ist ein wichtiger Bestandteil der Apoptose Maschinerie, die durch Cisplatin aktiviert wird. Die im Rahmen dieser Arbeit erhaltenen Befunde deuten darauf hin, dass RTKs, im besonderen EGFR, bei diesem Crosstalk eine Rolle spielen. Diese Ergebnisse zeigen, dass die Inhibition des RAS/RAF/MEK/ERK Signalweges im Melanom nicht zwangsl{\"a}ufig von Vorteil sein muss, falls die Zellen gleichzeitig mit einem genotoxischen Medikament behandelt werden. Hier kann sie sogar die {\"U}berlebensf{\"a}higkeit von Melanomzellen unter Apoptose induzierenden Bedingungen verbessern.}, subject = {Melanom}, language = {en} } @phdthesis{Robubi2007, author = {Robubi, Armin}, title = {RAF Kinases: Pathway, Modulation and Modeling}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-26953}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {The Ras/RAF/MEK/ERK cascade is a central cellular signal transduction pathway involved in cell proliferation, differentiation, and survival where RAF kinases are pivotal kinases implicated in cancer. The development of specific irreversible kinase inhibitors is a rewarding but difficult aim. CI-1033 was developed to irreversibly inhibit erbB receptor tyrosine kinases by reacting to the Cys113 residue (p38alpha MAP kinase numbering) of the kinase domain. In this study we tried a similar approach to target the RAF oncoproteins which posses a similar cysteine at position 108 in the hinge region between the small n-lobe and the large c-lobe of the kinase domain. A novel synthetic approach including a lyophilization step allowed us the synthesis of a diphenyl urea compound with an epoxide moiety (compound 1). Compound 1 possessed inhibitory activity in vitro. However our time kinetics experiments and mass spectroscopic studies clearly indicate that compound 1 does not react covalently with the cysteine residue in the hinge region. Moreover, in cell culture experiments, a strong activation of the RAF signaling pathway was observed, an effect which is known from several other RAF kinase inhibitors and is here reported for the first time for a diphenyl urea compound, to which the clinically used unspecific kinase inhibitor BAY 43-9006 (Sorafinib, Nexavar) belongs. Although activation was apparently independent on B- and C-RAF hetero-oligomerization in vitro, in vivo experiments support such a mechanism as the activation did not occur in starved knockout cells lacking either B-RAF or C-RAF. Furthermore, we developed a mathematical model of the Ras/RAF/MEK/ERK cascade demonstrating how stimuli induce different signal patterns and thereby different cellular responses, depending on cell type and the ratio between B-RAF and C-RAF. Based on biochemical data for activation and dephosphorylation, we set up differential equations for a dynamical model of the Ras/RAF/MEK/ERK cascade. We find a different signaling pattern and response result for B-RAF (strong activation, sustained signal) and C-RAF (steep activation, transient signal). We further support the significance of such differential modulatory signaling by showing different RAF isoform expression in various cell lines and experimental testing of the predicted kinase activities in B-RAF, C-RAF as well as mutated versions. Additionally the effect of the tumor suppressor DiRas3 (also known as Noey2 or ARHI) on RAF signaling was studied. I could show that DiRas3 down-regulates the mitogenic pathway by inhibition of MEK, a basis for a refined model of the Ras/RAF/MEK/ERK cascade.}, subject = {Systembiologie}, language = {en} } @article{SchartlWittbrodtMaeueleretal.1993, author = {Schartl, Manfred and Wittbrodt, J. and M{\"a}ueler, W. and Raulf, F. and Adam, D. and Hannig, G. and Telling, A. and Storch, F. and Andexinger, S. and Robertson, S. M.}, title = {Oncogenes and melanoma formation in Xiphoporus (Teleostei: Poeciliidae)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-87149}, year = {1993}, abstract = {In Xiphophorus melanoma formation has been attributed by classical genetic findings to the overexpression of a cellular oncogene (Tu) due to elimination of the corresponding regulatory gene locus in hybrids. We have attempted to elucidate this phenomenon on the molecular biological level. Studies on the structure and expression of known proto-oncogenes revealed that several of these genes, especially the c-src gene of Xiphophorus, may act as effectors in establishing the neoplastic phenotype of the melanoma cells . However, these genes appear more to participate in secondary steps of tumorigenesis. Another gene, being termed Xmrk, which represents obviously a so far unknown proto-oncogene but with a cons iderably high similarity to the epidermal growth-factorreceptor gene, was mapped to the Tu-containing region of the chromosome. This gene shows features with respect to its structure and expression that seem to justify it to be regarded as a candidate for a gene involved in the primary processes leading to neoplastic transformation of pigment cells in Xiphophorus.}, subject = {Schwertk{\"a}rpfling}, language = {en} } @phdthesis{Jessen2021, author = {Jessen, Christina}, title = {NRF2 links antioxidant and immune-relevant features in melanoma}, doi = {10.25972/OPUS-23349}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-233495}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The transcription factor NRF2 is considered as the master regulator of cytoprotective and ROS-detoxifying gene expression. Due to their vulnerability to accumulating reactive oxygen species, melanomas are dependent on an efficient oxidative stress response, but to what extent melanomas rely on NRF2 is only scarcely investigated so far. In tumor entities harboring activating mutations of NRF2, such as lung adenocarcinoma, NRF2 activation is closely connected to therapy resistance. In melanoma, activating mutations are rare and triggers and effectors of NRF2 are less well characterized. This work revealed that NRF2 is activated by oncogenic signaling, cytokines and pro-oxidant triggers, released cell-autonomously or by the tumor microenvironment. Moreover, silencing of NRF2 significantly reduced melanoma cell proliferation and repressed well-known NRF2 target genes, indicating basal transcriptional activity of NRF2 in melanoma. Transcriptomic analysis showed a large set of deregulated gene sets, besides the well-known antioxidant effectors. NRF2 suppressed the activity of MITF, a marker for the melanocyte lineage, and induced expression of epidermal growth factor receptor (EGFR), thereby stabilizing the dedifferentiated melanoma phenotype and limiting pigmentation markers and melanoma-associated antigens. In general, the dedifferentiated melanoma phenotype is associated with a reduced tumor immunogenicity. Furthermore, stress-inducible cyclooxygenase 2 (COX2) expression, a crucial immune-modulating gene, was regulated by NRF2 in an ATF4-dependent manner. Only in presence of both transcription factors was COX2 robustly induced by H2O2 or TNFα. COX2 catalyzes the first step of the prostaglandin E2 (PGE2) synthesis, which was described to be associated with tumor immune evasion and reduction of the innate immune response. In accordance with these potentially immune-suppressive features, immunocompetent mice injected with NRF2 knockout melanoma cells had a strikingly longer tumor-free survival compared to NRF2-proficient cells. In line with the in vitro data, NRF2-deficient tumors showed suppression of COX2 and induction of MITF. Furthermore, transcriptomic analyses of available tumors revealed a strong induction of genes belonging to the innate immune response, such as RSAD2 and IFIH1. The expression of these genes strongly correlated with immune evasion parameters in human melanoma datasets and NRF2 activation or PGE2 supplementation limited the innate immune response in vitro. In summary, the stress dependent NRF2 activation stabilizes the dedifferentiated melanoma phenotype and facilitates the synthesis of PGE2. As a result, NRF2 reduces gene expression of the innate immune response and promotes the generation of an immune-cold tumor microenvironment. Therefore, NRF2 not only elevated the ROS resilience, but also strongly contributed to tumor growth, maintenance, and immune control in cutaneous melanoma.}, subject = {Melanom}, language = {en} } @phdthesis{Maurus2016, author = {Maurus, Katja}, title = {Melanoma Maintenance by the AP1 Transcription Factor FOSL1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142995}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Identifying novel driver genes in cancer remains a crucial step towards development of new therapeutic approaches and the basic understanding of the disease. This work describes the impact of the AP1 transcription activator component FOSL1 on melanoma maintenance. FOSL1 is strongly upregulated during the progression of melanoma and the protein abundance is highest in metastases. I found that the regulation of FOSL1 is strongly dependent on ERK1/2- and PI3K- signaling, two pathways frequently activated in melanoma. Moreover, the involvement of p53 in FOSL1 regulation in melanoma was investigated. Elevated levels of the tumor suppressor led to decreased FOSL1 protein levels in a miR34a/miR34c- dependent manner. The benefit of elevated FOSL1 amounts in human melanoma cell lines was analyzed by overexpression of FOSL1 in cell lines with low endogenous FOSL1 levels. Enhanced levels of FOSL1 had several pro-tumorigenic effects in human melanoma cell lines. Besides increased proliferation and migration rates, FOSL1 overexpression induced the colony forming ability of the cells. Additionally, FOSL1 was necessary for anchorage independent growth in 3D cell cultures. Microarray analyses revealed novel downstream effectors of FOSL1. On the one hand, FOSL1 was able to induce the transcription of different neuron-related genes, such as NEFL, NRP1 and TUBB3. On the other hand, FOSL1 influenced the transcription of DCT, a melanocyte specific gene, in dependence of the differentiation of the melanoma cell line, indicating dedifferentiation. Furthermore, FOSL1 induced the transcription of HMGA1, a chromatin remodeling protein with reprogramming ability, which is characteristic for stem cells. Consequently, the influence of HMGA1 on melanoma maintenance was investigated. In addition to decreased proliferation and reduced anoikis resistance, HMGA1 knockdown reduced melanoma cell survival. Interestingly, the FOSL1 induced pro-tumorigenic effects were demonstrated to be dependent on the HMGA1 level. HMGA1 manipulation reversed FOSL1 induced proliferation and colony forming ability, as well as the anchorage independent growth effect. In conclusion, I could show that additional FOSL1 confers a clear growth benefit to melanoma cells. This benefit is attributed to the induction of stem cell determinants, but can be blocked by the inhibition of the ERK1/2 or PI3K signaling pathways.}, subject = {Melanom}, language = {en} } @phdthesis{AlcantarinoMenescal2012, author = {Alcantarino Menescal, Luciana}, title = {In vivo characterization of genetic factors involved in Xmrk driven melanoma formation in Medaka (Oryzias latipes): a closer look at braf, Stat5 and c-myc}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70762}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Melanoma arises from the malignant transformation of melanocytes and is one of the most aggressive forms of human cancer. In fish of the genus Xiphophorus, melanoma development, although very rarely, happens spontaneously in nature and can be induced by interspecific crossing. The oncogenic receptor tyrosine kinase, Xmrk, is responsible for melanoma formation in these fishes. Since Xiphophorus are live-bearing fishes and therefore not compatible with embryonic manipulation and transgenesis, the Xmrk melanoma model was brought to the medaka (Oryzias latipes) system. Xmrk expression under the control of the pigment cell specific mitf promoter leads to melanoma formation with 100\% penetrance in medaka. Xmrk is an orthologue of the human epidermal growth factor receptor (EGFR) and activates several downstream signaling pathways. Examples of these pathways are the direct phosphorylation of BRAF and Stat5, as well as the enhanced transcription of C-myc. BRAF is a serine-threonine kinase which is found mutated at high frequencies in malignant melanomas. Stat5 is a transcription factor known to be constitutively activated in fish melanoma. C-myc is a transcription factor that is thought to regulate the expression of approximately 15\% of all human genes and is involved in cancer progression of a large number of different tumors. To gain new in vivo information on candidate factors known to be involved in melanoma progression, I identified and analysed BRAF, Stat5 and C-myc in the laboratory fish model system medaka. BRAF protein motifs are highly conserved among vertebrates and the results of this work indicate that its function in the MAPK signaling is maintained in medaka. Transgenic medaka lines carrying a constitutive active version of BRAF (V614E) showed more pigmented skin when compared to wild type. Also, some transiently expressing BRAF V614E fishes showed a disrupted eye phenotype. In addition, I was able to identify two Stat5 copies in medaka, named Stat5ab/a and Stat5ab/b. Sequence analysis revealed a higher similarity between both Stat5 sequences when compared to either human Stat5a or Stat5b. This suggests that the two Stat5 copies in medaka arose by an independent duplication processes. I cloned these two Stat5 present in medaka, produced constitutive active and dominant negative gene versions and successfully established transgenic lines carrying each version under the control of the MITF promoter. These lines will help to elucidate questions that are still remaining in Stat5 biology and its function in melanoma progression, like the role of Stat5 phosphorylation on tumor invasiveness. In a third project during my PhD work, I analysed medaka C-myc function and indentified two copies of this gene in medaka, named c-myc17 and c-myc20, according to the chromosome where they are located. I produced conditional transgenic medaka lines carrying the c-myc17 gene coupled to the hormone binding domain of the estrogen receptor to enable specific transgene activation at a given time point. Comparable to human C-myc, medaka C-myc17 is able to induce proliferation and apoptosis in vivo after induction. Besides that, C-myc17 long-term activation led to liver hyperplasia. In summary, the medaka models generated in this work will be important to bring new in vivo information on genes involved in cancer development. Also, the generated transgenic lines can be easily crossed to the melanoma developing Xmrk medaka lines, thereby opening up the possibility to investigate their function in melanoma progression. Besides that, the generated medaka fishes make it possible to follow the whole development of melanocytes, since the embryos are transparent and can be used for high throughput chemical screens.}, subject = {Japank{\"a}rpfling}, language = {en} } @phdthesis{Staus2021, author = {Staus, Madlen}, title = {Glutathione-dependent reprogramming in melanoma}, doi = {10.25972/OPUS-16842}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168424}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {These days, treatment of melanoma patients relies on targeted therapy with BRAF/MEK inhibitors and on immunotherapy. About half of all patients initially respond to existing therapies. Nevertheless, the identification of alternative therapies for melanoma patients with intrinsic or acquired resistance is of great importance. In melanoma, antioxidants play an essential role in the maintenance of the redox homeostasis. Therefore, disruption of the redox homeostasis is regarded as highly therapeutically relevant and is the focus of the present work. An adequate supply of cysteine is essential for the production of the most important intracellular antioxidants, such as glutathione. In the present work, it was investigated whether the depletion of cysteine and glutathione is therapeutically useful. Depletion of glutathione in melanoma cells could be achieved by blocking cysteine supply, glutathione synthesis, and NADPH regeneration. As expected, this led to an increased level of reactive oxygen species (ROS). Surprisingly, however, these changes did not impair the proliferation and survival of the melanoma cells. In contrast, glutathione depletion led to cellular reprogramming which was characterized by the induction of mesenchymal genes and the repression of differentiation markers (phenotypic switch). This was accompanied by an increased migration and invasion potential which was favored by the induction of the transcription factor FOSL1. To study in vivo reprogramming, Gclc, the first and rate-limiting enzyme in glutathione synthesis, was knocked out by CRISPR/Cas9 in murine melanoma cells. The cells were devoid of glutathione, but were fully viable and showed a phenotypic switch, the latter only in MITF-expressing B16F1 cells and not in MITF-deficient D4M3A.781 cells. Following subcutaneous injection into immunocompetent C57BL/6 mice, Gclc knockout B16F1 cells grew more aggressively and resulted in an earlier tumor onset than B16F1 control cells. In summary, this work demonstrates that inhibition of cysteine supply and thus, glutathione synthesis leads to cellular reprogramming in melanoma. In this context, melanoma cells show metastatic capabilities, promoting a more aggressive form of the disease.}, subject = {Melanom}, language = {en} }