@phdthesis{LuiblneeHermann2014, author = {Luibl [n{\´e}e Hermann], Christiane}, title = {The role of the neuropeptides NPF, sNPF, ITP and PDF in the circadian clock of Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-93796}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Organisms have evolved endogenous clocks which allow them to organize their behavior, metabolism and physiology according to the periodically changing environmental conditions on earth. Biological rhythms that are synchronized to daily changes in environment are governed by the so-called circadian clock. Since decades, chronobiologists have been investigating circadian clocks in various model organisms including the fruitfly Drosophila melanogaster, which was used in the present thesis. Anatomically, the circadian clock of the fruitfly consists of about 150 neurons in the lateral and dorsal protocerebrum, which are characterized by their position, morphology and neurochemistry. Some of these neurons had been previously shown to contain either one or several neuropeptides, which are thought to be the main signaling molecules used by the clock. The best investigated of these neuropeptides is the Pigment Dispersing Factor (PDF), which had been shown to constitute a synchronizing signal between clock neurons as well as an output factor of the clock. In collaboration with various coworkers, I investigated the roles of three other clock expressed neuropeptides for the generation of behavioral rhythms and the partly published, partly unpublished data are presented in this thesis. Thereby, I focused on the Neuropeptide F (NPF), short Neuropeptide F (sNPF) and the Ion Transport Peptide (ITP). We show that part of the neuropeptide composition within the clock network seems to be conserved among different Drosophila species. However, the PDF expression pattern in certain neurons varied in species deriving from lower latitudes compared to higher latitudes. Together with findings on the behavioral level provided by other people, these data suggest that different species may have altered certain properties of their clocks - like the neuropeptide expression in certain neurons - in order to adapt their behavior to different habitats. We then investigated locomotor rhythms in Drosophila melanogaster flies, in which neuropeptide circuits were genetically manipulated either by cell ablation or RNA interference (RNAi). We found that none of the investigated neuropeptides seems to be of equal importance for circadian locomotor rhythms as PDF. PDF had been previously shown to be necessary for rhythm maintenance in constant darkness (DD) as well as for the generation of morning (M) activity and for the right phasing of the evening (E) activity in entrained conditions. We now demonstrate that NPF and ITP seem to promote E activity in entrained conditions, but are clearly not the only factors doing so. In addition, ITP seems to reduce nighttime activity. Further, ITP and possibly also sNPF constitute weak period shortening components in DD, thereby opposing the effect of PDF. However, neither NPF or ITP, nor sNPF seem to be necessary in the clock neurons for maintaining rhythmicity in DD. It had been previously suggested that PDF is released rhythmically from the dorsal projection terminals. Now we discovered a rhythm in ITP immunostaining in the dorsal projection terminals of the ITP+ clock neurons in LD, suggesting a rhythm in peptide release also in the case of ITP. Rhythmic release of both ITP and PDF seems to be important to maintain rhythmic behavior in DD, since constantly high levels of PDF and ITP in the dorsal protocerebrum lead to behavioral arrhythmicity. Applying live-imaging techniques we further demonstrate that sNPF acts in an inhibitory way on few clock neurons, including some that are also activated by PDF, suggesting that it acts as signaling molecule within the clock network and has opposing effects to PDF. NPF did only evoke very little inhibitory responses in very few clock neurons, suggesting that it might rather be used as a clock output factor. We were not able to apply the same live-imaging approach for the investigation of the clock neuron responsiveness to ITP, but overexpression of ITP with various driver lines showed that the peptide most likely acts mainly in clock output pathways rather than inter-clock neuron communication. Taking together, I conclude that all investigated peptides contribute to the control of locomotor rhythms in the fruitfly Drosophila melanogaster. However, this control is in most aspects dominated by the actions of PDF and rather only fine-tuned or complemented by the other peptides. I assume that there is a high complexity in spatial and temporal action of the different neuropeptides in order to ensure correct signal processing within the clock network as well as clock output.}, subject = {Taufliege}, language = {en} } @phdthesis{Kistenpfennig2012, author = {Kistenpfennig, Christa}, title = {Rhodopsin 7 and Cryptochrome - circadian photoreception in Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72209}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Many organisms evolved an endogenous clock to adapt to the daily environmental changes caused by the earth's rotation. Light is the primary time cue ("Zeitgeber") for entrainment of circadian clocks to the external 24-h day. In Drosophila, several visual pigments are known to mediate synchronization to light: The blue-light photopigment Cryptochrome (CRY) and six well-described rhodopsins (Rh1-Rh6). CRY is present in the majority of clock neurons as well as in the compound eyes, whereas the location of rhodopsins is restricted to the photoreceptive organs - the compound eyes, the ocelli and the HB-eyelets. CRY is thought to represent the key photoreceptor of Drosophila's circadian clock. Nevertheless, mutant flies lacking CRY (cry01) are able to synchronize their locomotor activity rhythms to light-dark (LD) cycles, but need significantly longer than wild-type flies. In this behavior, cry01 mutants strongly resemble mammalian species that do not possess any internal photoreceptors and perceive light information exclusively through their photoreceptive organs (eyes). Thus, a mammalian-like phase-shifting behavior would be expected in cry01 flies. We investigated this issue by monitoring a phase response curve (PRC) of cry01 and wild-type flies to 1-h light pulses of 1000 lux irradiance. Indeed, cry01 mutants produced a mammalian-similar so called type 1 PRC of comparatively low amplitude (< 25\% of wild-type) with phase delays to light pulses during the early subjective night and phase advances to light pulses during the late subjective night (~1 h each). Despite the predominant role of CRY, the visual system contributes to the light sensitivity of the fly's circadian clock, mainly around dawn and dusk. Furthermore, this phase shifting allows for the slow re-entrainment which we observed in cry01 mutants to 8-h phase delays of the LD 12 h:12 h cycle. However, cry01 also showed surprising differences in their shifting ability: First of all, their PRC was characterized by a second dead zone in the middle of the subjective night (ZT17-ZT19) in addition to the usual unresponsiveness during the subjective day. Second, in contrast to wild-type flies, cry01 mutants did not increase their shift of activity rhythms neither in response to longer stimuli nor to light pulses of higher irradiance. In contrast, both 6-h light pulses of 1000 lux and 1-h light pulses of 10,000 lux light intensity during the early subjective night even resulted in phase advances instead of the expected delays. Thus, CRY seems to be not only responsible for the high light sensitivity of the wild-type circadian clock, but is apparently also involved in integrating and processing light information. Rhodopsin 7 (Rh7) is a yet uncharacterized protein, but became a good photoreceptor candidate due to sequence similarities to the six known Drosophila Rhs. The second part of this thesis investigated the expression pattern of Rh7 and its possible functions, especially in circadian photoreception. Furthermore, we were interested in a potential interaction with CRY and thus, tested cry01 and rh70 cry01 mutants as well. Rh1 is the main visual pigment of the Drosophila compound eye and expressed in six out of eight photoreceptors cells (R1-R6) in each of the ~800 ommatidia. Motion vision depends exclusively on Rh1 function but, moreover, Rh1 plays an important structural role and assures proper photoreceptor cell development and maintenance. In order to investigate its possible photoreceptive function, we expressed Rh7 in place of Rh1. Rh7 was indeed able to overtake the role of Rh1 in both aspects: It prevented retinal degeneration and mediated the optomotor response (OR), a motion vision-dependent behavior. At the transcriptional level, rh7 is expressed at approximately equal amounts in adult fly brains and retinas. Due to a reduced specificity of anti-Rh7 antibodies, we could not verify this result at the protein level. However, analysis of rh7 null mutants (rh70) suggested different Rh7 functions in vivo. Previous experiments strongly indicated an increased sensitivity of the compound eyes in the absence of Rh7 and suggested impaired light adaptation. We aimed to test this hypothesis at the levels of circadian photoreception. Locomotor activity rhythms are a reliable output of the circadian clock. Rh70 mutant flies generally displayed a wild-type similar bimodal activity pattern comprising morning (M) and evening (E) activity bouts. Activity monitoring supported the proposed "shielding" function, since rh70 mutants behaved like wild-type flies experiencing high irradiances. Under all investigated conditions, their activity peaks lay further apart resulting in a prolonged midday break. The behavior of cry01 mutants was mainly characterized by an unexpectedly high flexibility in the timing of M and E activity bouts which allowed tracking of lights-on and lights-off even under extreme photoperiods. Activity profiles of the corresponding rh70 cry01 double mutants reflected neither synergistic nor antagonistic effects of Rh7 and CRY and were dominated by a broad E activity peak. In the future, the different circadian phenotypes will be further investigated on the molecular level by analysis of clock protein cycling in the underlying pacemaker neurons. The work of this thesis confirmed that Rh7 is indeed able to work as a photoreceptor and to initiate the classical phototransduction cascade. On the other hand, it provided further evidence at the levels of circadian photoreception that Rh7 might serve as a shielding pigment for Rh1 in vivo, thereby mediating proper light adaptation.}, language = {en} }