@article{KortmannRothBuseetal.2022, author = {Kortmann, Mareike and Roth, Nicolas and Buse, J{\"o}rn and Hilszczański, Jacek and Jaworski, Tomasz and Morini{\`e}re, J{\´e}r{\^o}me and Seidl, Rupert and Thorn, Simon and M{\"u}ller, J{\"o}rg C.}, title = {Arthropod dark taxa provide new insights into diversity responses to bark beetle infestations}, series = {Ecological Applications}, volume = {32}, journal = {Ecological Applications}, number = {2}, doi = {10.1002/eap.2516}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-276392}, year = {2022}, abstract = {Natural disturbances are increasing around the globe, also impacting protected areas. Although previous studies have indicated that natural disturbances result in mainly positive effects on biodiversity, these analyses mostly focused on a few well established taxonomic groups, and thus uncertainty remains regarding the comprehensive impact of natural disturbances on biodiversity. Using Malaise traps and meta-barcoding, we studied a broad range of arthropod taxa, including dark and cryptic taxa, along a gradient of bark beetle disturbance severities in five European national parks. We identified order-level community thresholds of disturbance severity and classified barcode index numbers (BINs; a cluster system for DNA sequences, where each cluster corresponds to a species) as negative or positive disturbance indicators. Negative indicator BINs decreased above thresholds of low to medium disturbance severity (20\%-30\% of trees killed), whereas positive indicator BINs benefited from high disturbance severity (76\%-98\%). BINs allocated to a species name contained nearly as many positive as negative disturbance indicators, but dark and cryptic taxa, particularly Diptera and Hymenoptera in our data, contained higher numbers of negative disturbance indicator BINs. Analyses of changes in the richness of BINs showed variable responses of arthropods to disturbance severity at lower taxonomic levels, whereas no significant signal was detected at the order level due to the compensatory responses of the underlying taxa. We conclude that the analyses of dark taxa can offer new insights into biodiversity responses to disturbances. Our results suggest considerable potential for forest management to foster arthropod diversity, for example by maintaining both closed-canopy forests (>70\% cover) and open forests (<30\% cover) on the landscape.}, language = {en} } @article{UhlerRedlichZhangetal.2021, author = {Uhler, Johannes and Redlich, Sarah and Zhang, Jie and Hothorn, Torsten and Tobisch, Cynthia and Ewald, J{\"o}rg and Thorn, Simon and Seibold, Sebastian and Mitesser, Oliver and Morin{\`e}re, J{\´e}r{\^o}me and Bozicevic, Vedran and Benjamin, Caryl S. and Englmeier, Jana and Fricke, Ute and Ganuza, Cristina and Haensel, Maria and Riebl, Rebekka and Rojas-Botero, Sandra and Rummler, Thomas and Uphus, Lars and Schmidt, Stefan and Steffan-Dewenter, Ingolf and M{\"u}ller, J{\"o}rg}, title = {Relationships of insect biomass and richness with land use along a climate gradient}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, number = {1}, doi = {10.1038/s41467-021-26181-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265058}, year = {2021}, abstract = {Recently reported insect declines have raised both political and social concern. Although the declines have been attributed to land use and climate change, supporting evidence suffers from low taxonomic resolution, short time series, a focus on local scales, and the collinearity of the identified drivers. In this study, we conducted a systematic assessment of insect populations in southern Germany, which showed that differences in insect biomass and richness are highly context dependent. We found the largest difference in biomass between semi-natural and urban environments (-42\%), whereas differences in total richness (-29\%) and the richness of threatened species (-56\%) were largest from semi-natural to agricultural environments. These results point to urbanization and agriculture as major drivers of decline. We also found that richness and biomass increase monotonously with increasing temperature, independent of habitat. The contrasting patterns of insect biomass and richness question the use of these indicators as mutual surrogates. Our study provides support for the implementation of more comprehensive measures aimed at habitat restoration in order to halt insect declines.}, language = {en} } @article{RothZoderZamanetal.2020, author = {Roth, Nicolas and Zoder, Sebastian and Zaman, Assad Ali and Thorn, Simon and Schmidl, J{\"u}rgen}, title = {Long-term monitoring reveals decreasing water beetle diversity, loss of specialists and community shifts over the past 28 years}, series = {Insect Conservation and Diversity}, volume = {13}, journal = {Insect Conservation and Diversity}, number = {2}, doi = {10.1111/icad.12411}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214905}, pages = {140 -- 150}, year = {2020}, abstract = {Lentic freshwater organisms are influenced by a multitude of factors, including geomorphology, hydrology, anthropogenic impacts and climate change. Organisms that depend on patchy resources such as water beetles may also be sensitive to anthropogenic habitat degradation, like pollution, eutrophication, water level or management alteration. To assess composition and ecological trends in the water beetle communities of Central Europe, we sampled water beetles (Dytiscidae, Haliplidae, Noteridae) in 33 water bodies in Southern Germany from 1991 to 2018. We used manual, time-standardised capture during three periods: between 1991 and 1995, 2007 and 2008, and 2017 and 2018. During the 28-year survey period, we captured a total of 81 species. We found annual declines in both species number (ca -1\%) and abundance (ca -2\%). Also, community composition showed significant changes over time. The significant impact of pH on the community composition suggests that the recorded changes through time partly reflect natural succession processes. However, a pronounced decline of beetle species belonging to the moor-related beetle associations indicated that Central European water beetles are also threatened by non-successional factors, including desiccation, increased nitrogen input and/or mineralisation, and the loss of specific habitats. This trend to physiographical homogenisation resulted in corresponding community composition shifts. To effectively protect endangered species, conservation strategies need to be aimed at regularly creating new water bodies with mineralic bottom substratum, and maintenance of moor water bodies that represent late successional stages.}, language = {en} } @article{GeorgievChaoCastroetal.2020, author = {Georgiev, Kostadin B. and Chao, Anne and Castro, Jorge and Chen, Yan-Han and Choi, Chang-Yong and Fontaine, Joseph B. and Hutto, Richard L. and Lee, Eun-Jae and M{\"u}ller, J{\"o}rg and Rost, Josep and Żmihorski, Michal and Thorn, Simon}, title = {Salvage logging changes the taxonomic, phylogenetic and functional successional trajectories of forest bird communities}, series = {Journal of Applied Ecology}, volume = {57}, journal = {Journal of Applied Ecology}, number = {6}, doi = {10.1111/1365-2664.13599}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214887}, pages = {1103 -- 1112}, year = {2020}, abstract = {Salvage logging following natural disturbances may alter the natural successional trajectories of biological communities by affecting the occurrences of species, functional groups and evolutionary lineages. However, few studies have examined whether dissimilarities between bird communities of salvaged and unsalvaged forests are more pronounced for rare species, functional groups and evolutionary lineages than for their more common counterparts. We compiled data on breeding bird assemblages from nine study areas in North America, Europe and Asia, covering a 17-year period following wildfire or windstorm disturbances and subsequent salvage logging. We tested whether dissimilarities based on non-shared species, functional groups and evolutionary lineages (a) decreased or increased over time and (b) the responses of rare, common and dominant species varied, by using a unified statistical framework based on Hill numbers and null models. We found that dissimilarities between bird communities caused by salvage logging persisted over time for rare, common and dominant species, evolutionary lineages and for rare functional groups. Dissimilarities of common and dominant functional groups increased 14 years post disturbance. Salvage logging led to significantly larger dissimilarities than expected by chance. Functional dissimilarities between salvaged and unsalvaged sites were lower compared to taxonomic and phylogenetic dissimilarities. In general, dissimilarities were highest for rare, followed by common and dominant species. Synthesis and applications. Our research demonstrates that salvage logging did not decrease dissimilarities of bird communities over time and taxonomic, functional and phylogenetic dissimilarities persisted for over a decade. We recommend resource managers and decision makers to reserve portions of disturbed forest to enable unmanaged post-disturbance succession of bird communities, particularly to conserve rare species found in unsalvaged disturbed forests.}, language = {en} } @article{ThornSeiboldLeverkusetal.2020, author = {Thorn, Simon and Seibold, Sebastian and Leverkus, Alexandro B and Michler, Thomas and M{\"u}ller, J{\"o}rg and Noss, Reed F and Stork, Nigel and Vogel, Sebastian and Lindenmayer, David B}, title = {The living dead: acknowledging life after tree death to stop forest degradation}, series = {Frontiers in Ecology and the Environment}, volume = {18}, journal = {Frontiers in Ecology and the Environment}, number = {9}, doi = {10.1002/fee.2252}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218575}, pages = {505 -- 512}, year = {2020}, abstract = {Global sustainability agendas focus primarily on halting deforestation, yet the biodiversity crisis resulting from the degradation of remaining forests is going largely unnoticed. Forest degradation occurs through the loss of key ecological structures, such as dying trees and deadwood, even in the absence of deforestation. One of the main drivers of forest degradation is limited awareness by policy makers and the public on the importance of these structures for supporting forest biodiversity and ecosystem function. Here, we outline management strategies to protect forest health and biodiversity by maintaining and promoting deadwood, and propose environmental education initiatives to improve the general awareness of the importance of deadwood. Finally, we call for major reforms to forest management to maintain and restore deadwood; large, old trees; and other key ecological structures.}, language = {en} }