@phdthesis{Roth2021, author = {Roth, Nicolas M{\´e}riadec Max Andr{\´e}}, title = {Temporal development of communities with a focus on insects, in time series of one to four decades}, doi = {10.25972/OPUS-23549}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235499}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Changes and development are fundamental principles in biocenoses and can affect a multitude of ecological processes. In insect communities phenological and density changes, changes in species richness and community composition, as well as interactions between those changes, are the most important macro processes. However, climate change and other factors like habitat degradation and loss alter these processes leading to shifts and general biodiversity declines. Even though knowledge about insect decline in central Europe increased during the last decades, there are significant knowledge gaps about the development of insect communities in certain habitats and taxa. For example, insect communities in small lentic as well as in forested habitats are under-sampled and reported to be less endangered than communities in other habitats. Furthermore, the changes within habitats and taxa are additionally influenced by certain traits, like host or feeding specialization. To disentangle these influences and to increase the knowledge about the general long-term development of insect communities, comprehensive long-term monitoring studies are needed. In addition, long-term effects of conservation strategies should also be evaluated on large time scales in order to be able to decide on a scientific base which strategies are effective in promoting possibly declining taxa. Hence, this thesis also tackles the effects of an integrative conservation strategy on wood dependent beetle and fungi, beside the development of water beetle and macro moth communities over multiple decades. In Chapter 2 I present a study on the development of water beetle communities (Dytiscidae, Haliplidae, Noteridae) in 33 water bodies in Southern Germany from 1991 to 2018. Time-standardized capture per waterbody was used during three periods: between 1991 and 1995, 2007 and 2008, and 2017 and 2018. Results showed annual declines in both species number (ca. -1\%) and abundance (ca. -2\%). In addition, community composition shifted over time in part due to changing pH values. Hence, the recorded changes during the 28-year study period partly reflect natural succession processes. However, since also moor-related beetle species decreased significantly, it is likely that water beetles in southern Germany are also threatened by non-successional factors, including desiccation, increased nitrogen input and/or mineralization, as well as the loss of specific habitats. The results suggest, that in small to midsize lentic waterbodies, current development should aim for constant creation of new water bodies and protection of moor waterbodies in order to protect water beetle communities on a landscape scale. In Chapter 3 I present an analysis of the development of nocturnal macro moth species richness, abundance and biomass over four decades in forests of southern Germany. Two local scale data sets featuring a coppiced oak forest as well as an oak high forest were analysed separately from a regional data set representing all forest types in the temperate zone of Central Europe. At the regional scale species richness, abundance and biomass showed annual declines of ca. 1 \%, 1.3 \% and 1.4 \%, respectively. These declines were more pronounced in plant host specialists and in dark coloured species. In contrast, species richness increased by ca. 1.5 \% annually in the coppiced forest, while no significant trends were found in the high forest. In contrast to past assumptions, insect decline apparently affects also hyper diverse insect groups in forests. Since host specialists and dark coloured species were affected more heavily by the decline than other groups, habitat loss and climate change seem to be potential drivers of the observed trends. However, the positive development of species richness in the coppiced oak forest indicates that maintaining complex and diverse forest ecosystems through active management might compensate for negative trends in biodiversity. Chapter 4 features a study specifically aiming to investigate the long-term effect of deadwood enrichment as an integrative conservation strategy on saproxylic beetles and fungi in a central European beech forest at a landscape scale. A before-after control-impact design, was used to compare assemblages and gamma diversities of saproxylic organisms (beetles and fungi) in strictly protected old-growth forest areas (reserves) and previously moderately and intensively managed forest areas. Forests were sampled one year before and a decade after starting a landscape-wide strategy of dead-wood enrichment. Ten years after the start of the dead-wood enrichment, neither gamma diversities of saproxylic organisms nor species composition of beetles did reflect the previous management types anymore. However, fungal species composition still mirrored the previous management gradient. The results demonstrated that intentional enrichment of dead wood at the landscape scale can effectively restore communities of saproxylic organisms and may thus be a suitable strategy in addition to permanent strict reserves in order to protect wood dependent organisms in Europe. In this thesis I showed, that in contrast to what was assumed and partly reported so far, also water beetles in lentic water bodies and macro moths in forests decreased in species richness, abundance and biomass during the last three to four decades. In line with earlier studies, especially dark coloured species and specialists decreased more than light-coloured species and generalists. The reasons for these declines could partly be attributed to natural processes and pollution and possibly to climate change. However, further studies, especially experimental ones, will be needed to achieve a better understanding of the reasons for insect decline. Furthermore, analyses of time series data should be interpreted cautiously especially if the number of sampling years is smaller than ten years. In addition, validation techniques such as left- and right- censoring and cross validation should be used in order to proof the robustness of the analyses. However, the lack of knowledge, we are still facing today, should not prevent scientists and practitioners from applying conservation measures. In order to prove the effectiveness of such measures, long-term monitoring is crucial. Such control of success is essential for evidence based and thus adapted conservation strategies of threatened organisms.}, subject = {climate change}, language = {en} } @phdthesis{Nuernberger2018, author = {N{\"u}rnberger, Fabian}, title = {Timing of colony phenology and foraging activity in honey bees}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155105}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {I. Timing is a crucial feature in organisms that live within a variable and changing environment. Complex mechanisms to measure time are wide-spread and were shown to exist in many taxa. These mechanisms are expected to provide fitness benefits by enabling organisms to anticipate environmental changes and adapt accordingly. However, very few studies have addressed the adaptive value of proper timing. The objective of this PhD-project was to investigate mechanisms and fitness consequences of timing decisions concerning colony phenology and foraging activity in the honey bee (Apis mellifera), a social insect species with a high degree of social organization and one of the most important pollinators of wild plants and crops. In chapter II, a study is presented that aimed to identify the consequences of disrupted synchrony between colony phenology and the local environment by manipulating the timing of brood onset after hibernation. In a follow-up experiment, the importance of environmental factors for the timing of brood onset was investigated to assess the potential of climate change to disrupt synchronization of colony phenology (Chapter III). Chapter IV aimed to prove for the first time that honey bees can use interval time-place learning to improve foraging activity in a variable environment. Chapter V investigates the fitness benefits of information exchange between nest mates via waggle dance communication about a resource environment that is heterogeneous in space and time. II. In the study presented in chapter II, the importance of the timing of brood onset after hibernation as critical point in honey bee colony phenology in temperate zones was investigated. Honey bee colonies were overwintered at two climatically different sites. By translocating colonies from each site to the other in late winter, timing of brood onset was manipulated and consequently colony phenology was desynchronized with the local environment. Delaying colony phenology in respect to the local environment decreased the capability of colonies to exploit the abundant spring bloom. Early brood onset, on the other hand, increased the loads of the brood parasite Varroa destructor later in the season with negative impact on colony worker population size. This indicates a timing related trade-off and illustrates the importance of investigating effects of climate change on complex multi-trophic systems. It can be concluded that timing of brood onset in honey bees is an important fitness relevant step for colony phenology that is highly sensitive to climatic conditions in late winter. Further, phenology shifts and mismatches driven by climate change can have severe fitness consequences. III. In chapter III, I assess the importance of the environmental factors ambient temperature and photoperiod as well as elapsed time on the timing of brood onset. Twenty-four hibernating honey bee colonies were placed into environmental chambers and allocated to different combinations of two temperature regimes and three different light regimes. Brood onset was identified non-invasively by tracking comb temperature within the winter cluster. The experiment revealed that ambient temperature plays a major role in the timing of brood onset, but the response of honey bee colonies to temperature increases is modified by photoperiod. Further, the data indicate the involvement of an internal clock. I conclude that the timing of brood onset is complex but probably highly susceptible to climate change and especially spells of warm weather in winter. IV. In chapter IV, it was examined if honey bees are capable of interval time-place learning and if this ability improves foraging efficiency in a dynamic resource environment. In a field experiment with artificial feeders, foragers were able to learn time intervals and use this ability to anticipate time periods during which feeders were active. Further, interval time-place learning enabled foragers to increase nectar uptake rates. It was concluded that interval time-place learning can help honey bee foragers to adapt to the complex and variable temporal patterns of floral resource environments. V. The study presented in chapter V identified the importance of the honey bee waggle dance communication for the spatiotemporal coordination of honey bee foraging activity in resource environments that can vary from day to day. Consequences of disrupting the instructional component of honey bee dance communication were investigated in eight temperate zone landscapes with different levels of spatiotemporal complexity. While nectar uptake of colonies was not affected, waggle dance communication significantly benefitted pollen harvest irrespective of landscape complexity. I suggest that this is explained by the fact that honey bees prefer to forage pollen in semi-natural habitats, which provide diverse resource species but are sparse and presumably hard to find in intensively managed agricultural landscapes. I conclude that waggle dance communication helps to ensure a sufficient and diverse pollen diet which is crucial for honey bee colony health. VI. In my PhD-project, I could show that honey bee colonies are able to adapt their activities to a seasonally and daily changing environment, which affects resource uptake, colony development, colony health and ultimately colony fitness. Ongoing global change, however, puts timing in honey bee colonies at risk. Climate change has the potential to cause mismatches with the local resource environment. Intensivation of agricultural management with decreased resource diversity and short resource peaks in spring followed by distinctive gaps increases the probability of mismatches. Even the highly efficient foraging system of honey bees might not ensure a sufficiently diverse and healthy diet in such an environment. The global introduction of the parasitic mite V. destructor and the increased exposure to pesticides in intensively managed landscapes further degrades honey bee colony health. This might lead to reduced cognitive capabilities in workers and impact the communication and social organization in colonies, thereby undermining the ability of honey bee colonies to adapt to their environment.}, subject = {Biene}, language = {en} } @phdthesis{Mayr2021, author = {Mayr, Antonia Veronika}, title = {Following Bees and Wasps up Mt. Kilimanjaro: From Diversity and Traits to hidden Interactions of Species}, doi = {10.25972/OPUS-18292}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-182922}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Chapter 1 - General Introduction One of the greatest challenges of ecological research is to predict the response of ecosystems to global change; that is to changes in climate and land use. A complex question in this context is how changing environmental conditions affect ecosystem processes at different levels of communities. To shed light on this issue, I investigate drivers of biodiversity on the level of species richness, functional traits and species interactions in cavity-nesting Hymenoptera. For this purpose, I take advantage of the steep elevational gradient of Mt. Kilimanjaro that shows strong environmental changes on a relatively small spatial scale and thus, provides a good environmental scenario for investigating drivers of diversity. In this thesis, I focus on 1) drivers of species richness at different trophic levels (Chapter 2); 2) seasonal patterns in nest-building activity, life-history traits and ecological rates in three different functional groups and at different elevations (Chapter 3) and 3) changes in cuticular hydrocarbons, pollen composition and microbiomes in Lasioglossum bees caused by climatic variables (Chapter 4). Chapter 2 - Climate and food resources shape species richness and trophic interactions of cavity-nesting Hymenoptera Drivers of species richness have been subject to research for centuries. Temperature, resource availability and top-down regulation as well as the impact of land use are considered to be important factors in determining insect diversity. Yet, the relative importance of each of these factors is unknown. Using trap nests along the elevational gradient of Mt. Kilimanjaro, we tried to disentangle drivers of species richness at different trophic levels. Temperature was the major driver of species richness across trophic levels, with increasing importance of food resources at higher trophic levels in natural antagonists. Parasitism rate was both related to temperature and trophic level, indicating that the relative importance of bottom-up and top-down forces might shift with climate change. Chapter 3 - Seasonal variation in the ecology of tropical cavity-nesting Hymenoptera Natural populations fluctuate with the availability of resources, presence of natural enemies and climatic variations. But tropical mountain seasonality is not yet well investigated. We investigated seasonal patterns in nest-building activity, functional traits and ecological rates in three different insect groups at lower and higher elevations separately. Insects were caught with trap nests which were checked monthly during a 17 months period that included three dry and three rainy seasons. Insects were grouped according to their functional guilds. All groups showed strong seasonality in nest-building activity which was higher and more synchronised among groups at lower elevations. Seasonality in nest building activity of caterpillar-hunting and spider-hunting wasps was linked to climate seasonality while in bees it was strongly linked to the availability of flowers, as well as for the survival rate and sex ratio of bees. Finding adaptations to environmental seasonality might imply that further changes in climatic seasonality by climate change could have an influence on life-history traits of tropical mountain species. Chapter 4 - Cryptic species and hidden ecological interactions of halictine bees along an elevational Gradient Strong environmental gradients such as those occurring along mountain slopes are challenging for species. In this context, hidden adaptations or interactions have rarely been considered. We used bees of the genus Lasioglossum as model organisms because Lasioglossum is the only bee genus occurring with a distribution across the entire elevational gradient at Mt. Kilimanjaro. We asked if and how (a) cuticular hydrocarbons (CHC), which act as a desiccation barrier, change in composition and chain length along with changes in temperature and humidity (b), Lasioglossum bees change their pollen diet with changing resource availability, (c) gut microbiota change with pollen diet and climatic conditions, and surface microbiota change with CHC and climatic conditions, respectively, and if changes are rather influenced by turnover in Lasioglossum species along the elevational gradient. We found physiological adaptations with climate in CHC as well as changes in communities with regard to pollen diet and microbiota, which also correlated with each other. These results suggest that complex interactions and feedbacks among abiotic and biotic conditions determine the species composition in a community. Chapter 5 - General Discussion Abiotic and biotic factors drove species diversity, traits and interactions and they worked differently depending on the functional group that has been studied, and whether spatial or temporal units were considered. It is therefore likely, that in the light of global change, different species, traits and interactions will be affected differently. Furthermore, increasing land use intensity could have additional or interacting effects with climate change on biodiversity, even though the potential land-use effects at Mt. Kilimanjaro are still low and not impairing cavity-nesting Hymenoptera so far. Further studies should address species networks which might reveal more sensitive changes. For that purpose, trap nests provide a good model system to investigate effects of global change on multiple trophic levels and may also reveal direct effects of climate change on entire life-history traits when established under different microclimatic conditions. The non-uniform effects of abiotic and biotic conditions on multiple aspects of biodiversity revealed with this study also highlight that evaluating different aspects of biodiversity can give a more comprehensive picture than single observations.}, subject = {land use}, language = {en} } @phdthesis{Leingaertner2013, author = {Leing{\"a}rtner, Annette}, title = {Combined effects of climate change and extreme events on plants, arthropods and their interactions}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-87758}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {I. Global climate change directly and indirectly influences biotic and abiotic components of ecosystems. Changes in abiotic ecosystem components caused by climate change comprise temperature increases, precipitation changes and more frequently occurring extreme events. Mediated by these abiotic changes, biotic ecosystem components including all living organisms will also change. Expected changes of plants and animals are advanced phenologies and range shifts towards higher latitudes and altitudes which presumably induce changes in species interactions and composition. Altitudinal gradients provide an optimal opportunity for climate change studies, because they serve as natural experiments due to fast changing climatic conditions within short distances. In this dissertation two different approaches were conducted to reveal species and community responses to climate change. First, species richness and community trait analyses along an altitudinal gradient in the Bavarian Alps (chapters II, III) and second, climate change manipulation experiments under different climatic contexts (chapters IV, V, IV). II. We performed biodiversity surveys of butterfly and diurnal moth species on 34 grassland sites along an altitudinal gradient in the National Park Berchtesgaden. Additionally, we analysed the dominance structure of life-history traits in butterfly assemblages along altitude. Species richness of butterflies and diurnal moths decreased with increasing altitude. The dominance of certain life-history-traits changed along the altitudinal gradient with a higher proportion of larger-winged species and species with higher egg numbers towards higher altitudes. However, the mean egg maturation time, population density and geographic distribution within butterfly assemblages decreased with increasing altitude. Our results indicate that butterfly assemblages were mainly shaped by environmental filtering. We conclude that butterfly assemblages at higher altitudes will presumably lack adaptive capacity to future climatic conditions, because of specific trait combinations. III. In addition to butterfly and diurnal moth species richness we also studied plant species richness in combination with pollination type analyses along the altitudinal gradient. The management type of the alpine grasslands was also integrated in the analyses to detect combined effects of climate and management on plant diversity and pollination type. Plant species richness was highest at intermediate altitudes, whereby the management type influenced the plant diversity with more plant species at grazed compared to mown or non-managed grasslands. The pollination type was affected by both the changing climate along the gradient and the management type. These results suggest that extensive grazing can maintain high plant diversity along the whole altitudinal gradient. With ongoing climate change the diversity peak of plants may shift upwards, which can cause a decrease in biodiversity due to reduced grassland area but also changes in species composition and adaptive potential of pollination types. IV. We set up manipulation experiments on 15 grassland sites along the altitudinal gradient in order to determine the combined effects of extreme climatic events (extreme drought, advanced and delayed snowmelt) and elevation on the nutritional quality and herbivory rates of alpine plants. The leaf CN (carbon to nitrogen) ratio and the plant damage through herbivores were not significantly affected by the simulated extreme events. However, elevation influenced the CN ratios and herbivory rates of alpine plants with contrasting responses between plant guilds. Furthermore, we found differences in nitrogen concentrations and herbivory rates between grasses, legumes and forbs, whereas legumes had the highest nitrogen concentrations and were damaged most. Additionally, CN ratios and herbivory rates increased during the growing season, indicating a decrease of food plant quality during the growing season. Contrasting altitudinal responses of grasses, legumes and forbs presumably can change the dominance structure among these plant guilds with ongoing climate change. V. In this study we analysed the phenological responses of grassland species to an extreme drought event, advanced and delayed snowmelt along the altitudinal gradient. Advanced snowmelt caused an advanced beginning of flowering, whereas this effect was more pronounced at higher than at lower altitudes. Extreme drought and delayed snowmelt had rather low effects on the flower phenology and the responses did not differ between higher and lower sites. The strongest effect influencing flower phenology was altitude, with a declining effect through the season. The length of flowering duration was not significantly influenced by treatments. Our data suggest that plant species at higher altitudes may be more affected by changes in snowmelt timing in contrast to lowland species, as at higher altitudes more severe changes are expected. However, the risk of extreme drought events on flowering phenology seems to be low. VI. We established soil-emergence traps on the advanced snowmelt and control treatment plots in order to detect possible changes in abundances and emergence phenologies of five arthropod orders due to elevation and treatment. Additionally, we analysed the responses of Coleoptera species richness to elevation and treatment. We found that the abundance and species richness of Coleoptera increased with elevation as well as the abundance of Diptera. However, the abundance of Hemiptera decreased with elevation and the abundances of Araneae and Hymenoptera showed no elevational patterns. The advanced snowmelt treatment increased the abundances of Araneae and Hymenoptera. The emergence of soil-hibernating arthropods was delayed up to seven weeks at higher elevations, whereas advanced snowmelt did not influence the emergence phenology of arthropods immediately after snowmelt. With climate change earlier snowmelt will occur more often, which especially will affect soil-hibernating arthropods in alpine regions and may cause desynchronisations between species interactions. VII. In conclusion, we showed that alpine ecosystems are sensitive towards changing climate conditions and extreme events and that many alpine species in the Bavarian Alps are endangered. Many alpine species could exist under warmer climatic conditions, however they are expected to be outcompeted by more competitive lowland species. Furthermore, host-parasite or predator-prey interactions can be disrupted due to different responses of certain guilds to climate change. Understanding and predicting the complex dynamics and potential risks of future climate change remains a great challenge and therefore further studies analysing species and community responses to climate change are needed.}, subject = {Insekten}, language = {en} } @phdthesis{Hoiss2013, author = {Hoiß, Bernhard}, title = {Effects of climate change, extreme events and management on plants, pollinators and mutualistic interaction networks}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-87919}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {I. Climate change comprises average temperatures rise, changes in the distribution of precipitation and an increased amount and intensity of extreme climatic events in the last decades. Considering these serious changes in the abiotic environment it seems obvious that ecosystems also change. Flora and fauna have to adapt to the fast changing conditions, migrate or go extinct. This might result in shifts in biodiversity, species composition, species interactions and in ecosystem functioning and services. Mountains play an important role in the research of these climate impacts. They are hotspots of biodiversity and can be used as powerful natural experiments as they provide, within short distances, the opportunity to research changes in the ecosystem induced by different climatic contexts. In this dissertation two approaches were pursued: i) surveys of biodiversity, trait dominance and assembly rules in communities depending on the climatic context and different management regimes were conducted (chapters II and III) and ii) the effects of experimental climate treatments on essential ecosystem features along the altitudinal gradient were assessed (chapters IV, V and VI). II. We studied the relative importance of management, an altitudinal climatic gradient and their interactions for plant species richness and the dominance of pollination types in 34 alpine grasslands. Species richness peaked at intermediate temperatures and was higher in grazed grasslands compared to non-managed grasslands. We found the climatic context and also management to influence the distribution and dominance structures of wind- and insect-pollinated plants. Our results indicate that extensive grazing maintains high plant diversity over the full subalpine gradient. Rising temperatures may cause an upward shift of the diversity peak of plants and may also result in changed species composition and adaptive potential of pollination types. III. On the same alpine grasslands we studied the impact of the climatic context along an altitudinal gradient on species richness and community assembly in bee communities. Species richness and abundance declined linearly with increasing altitude. Bee species were more closely related at high altitudes than at low altitudes. The proportion of social and ground-nesting species, as well as mean body size and altitudinal range of bees, increased with increasing altitude, whereas the mean geographic distribution decreased. Our results suggest that community assembly at high altitudes is dominated by environmental filtering effects, while the relative importance of competition increases at low altitudes. We conclude that ongoing climate change poses a threat for alpine specialists with adaptations to cool environments but low competitive capacities. IV. We determined the impacts of short-term climate events on flower phenology and assessed whether those impacts differed between lower and higher altitudes. For that we simulated advanced and delayed snowmelt as well as drought events in a multi site experiment along an altitudinal gradient. Flower phenology was strongly affected by altitude, however, this effect declined through the season. The manipulative treatments caused only few changes in flowering phenology. The effects of advanced snowmelt were significantly greater at higher than at lower sites, but altitude did not influence the effect of the other treatments. The length of flowering duration was not significantly influenced by treatments. Our data indicate a rather low risk of drought events on flowering phenology in the Bavarian Alps. V. Changes in the structure of plant-pollinator networks were assessed along an altitudinal gradient combined with the experimental simulation of potential consequences of climate change: extreme drought events, advanced and delayed snowmelt. We found a trend of decreasing specialisation and therefore increasing complexity in networks with increasing altitude. After advanced snowmelt or drought networks were more specialised especially at higher altitudes compared to control plots. Our results show that changes in the network structures after climate manipulations depend on the climatic context and reveal an increasing susceptibility of plant-pollinator networks with increasing altitude. VI. The aim of this study was to determine the combined effects of extreme climatic events and altitude on leaf CN (carbon to nitrogen) ratios and herbivory rates in different plant guilds. We found no overall effect of climate manipulations (extreme drought events, advanced and delayed snowmelt) on leaf CN ratios and herbivory rates. However, plant guilds differed in CN ratios and herbivory rates and responded differently to altitude. CN ratios of forbs (legume and non-legume) decreased with altitude, whereas CN ratios of grasses increased with altitude. Further, CN ratios and herbivory rates increased during the growing season, indicating a decrease of food plant quality during the growing season. Insect herbivory rates were driven by food plant quality. Contrasting altitudinal responses of forbs versus grasses give reason to expect changed dominance structures among plant guilds with ongoing climate change. VII. This dissertation contributes to the understanding of factors that determine the composition and biotic interactions of communities in different climates. The results presented indicate that warmer climates will not only change species richness but also the assembly-rules for plant and bee communities depending on the species' functional traits. Our investigations provide insights in the resilience of different ecosystem features and processes towards climate change and how this resilience depends on the environmental context. It seems that mutualistic interactions are more susceptible to short-term climate events than flowering phenology and antagonistic interactions such as herbivory. However, to draw more general conclusions more empirical data is needed.}, subject = {Klima{\"a}nderung}, language = {en} }