@article{SickelAnkenbrandGrimmeretal.2015, author = {Sickel, Wiebke and Ankenbrand, Markus J. and Grimmer, Gudrun and Holzschuh, Andrea and H{\"a}rtel, Stephan and Lanzen, Jonathan and Steffan-Dewenter, Ingolf and Keller, Alexander}, title = {Increased efficiency in identifying mixed pollen samples by meta-barcoding with a dual-indexing approach}, series = {BMC Ecology}, volume = {15}, journal = {BMC Ecology}, number = {20}, doi = {10.1186/s12898-015-0051-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125730}, year = {2015}, abstract = {Background Meta-barcoding of mixed pollen samples constitutes a suitable alternative to conventional pollen identification via light microscopy. Current approaches however have limitations in practicability due to low sample throughput and/or inefficient processing methods, e.g. separate steps for amplification and sample indexing. Results We thus developed a new primer-adapter design for high throughput sequencing with the Illumina technology that remedies these issues. It uses a dual-indexing strategy, where sample-specific combinations of forward and reverse identifiers attached to the barcode marker allow high sample throughput with a single sequencing run. It does not require further adapter ligation steps after amplification. We applied this protocol to 384 pollen samples collected by solitary bees and sequenced all samples together on a single Illumina MiSeq v2 flow cell. According to rarefaction curves, 2,000-3,000 high quality reads per sample were sufficient to assess the complete diversity of 95\% of the samples. We were able to detect 650 different plant taxa in total, of which 95\% were classified at the species level. Together with the laboratory protocol, we also present an update of the reference database used by the classifier software, which increases the total number of covered global plant species included in the database from 37,403 to 72,325 (93\% increase). Conclusions This study thus offers improvements for the laboratory and bioinformatical workflow to existing approaches regarding data quantity and quality as well as processing effort and cost-effectiveness. Although only tested for pollen samples, it is furthermore applicable to other research questions requiring plant identification in mixed and challenging samples.}, language = {en} } @article{ShenChalopinGarciaetal.2016, author = {Shen, Yingjia and Chalopin, Domitille and Garcia, Tzintzuni and Boswell, Mikki and Boswell, William and Shiryev, Sergey A. and Agarwala, Richa and Volff, Jean-Nicolas and Postlethwait, John H. and Schartl, Manfred and Minx, Patrick and Warren, Wesley C. and Walter, Ronald B.}, title = {X. couchianus and X. hellerii genome models provide genomic variation insight among Xiphophorus species}, series = {BMC Genomics}, volume = {17}, journal = {BMC Genomics}, doi = {10.1186/s12864-015-2361-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164582}, pages = {37}, year = {2016}, abstract = {Background Xiphophorus fishes are represented by 26 live-bearing species of tropical fish that express many attributes (e.g., viviparity, genetic and phenotypic variation, ecological adaptation, varied sexual developmental mechanisms, ability to produce fertile interspecies hybrids) that have made attractive research models for over 85 years. Use of various interspecies hybrids to investigate the genetics underlying spontaneous and induced tumorigenesis has resulted in the development and maintenance of pedigreed Xiphophorus lines specifically bred for research. The recent availability of the X. maculatus reference genome assembly now provides unprecedented opportunities for novel and exciting comparative research studies among Xiphophorus species. Results We present sequencing, assembly and annotation of two new genomes representing Xiphophorus couchianus and Xiphophorus hellerii. The final X. couchianus and X. hellerii assemblies have total sizes of 708 Mb and 734 Mb and correspond to 98 \% and 102 \% of the X. maculatus Jp 163 A genome size, respectively. The rates of single nucleotide change range from 1 per 52 bp to 1 per 69 bp among the three genomes and the impact of putatively damaging variants are presented. In addition, a survey of transposable elements allowed us to deduce an ancestral TE landscape, uncovered potential active TEs and document a recent burst of TEs during evolution of this genus. Conclusions Two new Xiphophorus genomes and their corresponding transcriptomes were efficiently assembled, the former using a novel guided assembly approach. Three assembled genome sequences within this single vertebrate order of new world live-bearing fishes will accelerate our understanding of relationship between environmental adaptation and genome evolution. In addition, these genome resources provide capability to determine allele specific gene regulation among interspecies hybrids produced by crossing any of the three species that are known to produce progeny predisposed to tumor development.}, language = {en} }