@phdthesis{Jaenicke2015, author = {J{\"a}nicke, Laura Annika}, title = {Regulation of MYC Activity by the Ubiquitin-Proteasome System}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123339}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The oncogenic MYC protein is a transcriptional regulator of multiple cellular processes and is aberrantly activated in a wide range of human cancers. MYC is an unstable protein rapidly degraded by the ubiquitin-proteasome system. Ubiquitination can both positively and negatively affect MYC function, but its direct contribution to MYC-mediated transactivation remained unresolved. To investigate how ubiquitination regulates MYC activity, a non-ubiquitinatable MYC mutant was characterized, in which all lysines are replaced by arginines (K-less MYC). The absence of ubiquitin-acceptor sites in K-less MYC resulted in a more stable protein, but did not affect cellular localization, chromatin-association or the ability to interact with known MYC interaction partners. Unlike the wild type protein, K-less MYC was unable to promote proliferation in immortalized mammary epithelial cells. RNA- and ChIP-Sequencing analyses revealed that, although K-less MYC was present at MYC-regulated promoters, it was a weaker transcriptional regulator. The use of K-less MYC, a proteasomal inhibitor and reconstitution of individual lysine residues showed that proteasomal turnover of MYC is required for MYC target gene induction. ChIP-Sequencing of RNA polymerase II (RNAPII) revealed that MYC ubiquitination is dispensable for RNAPII recruitment and transcriptional initiation but is specifically required to promote transcriptional elongation. Turnover of MYC is required to stimulate histone acetylation at MYC-regulated promoters, which depends on a highly conserved region in MYC (MYC box II), thereby enabling the recruitment of BRD4 and P-TEFb and the release of elongating RNAPII from target promoters. Inhibition of MYC turnover enabled the identification of an intermediate in MYC-mediated transactivation, the association of MYC with the PAF complex, a positive elongation factor, suggesting that MYC acts as an assembly factor transferring elongation factors onto RNAPII. The interaction between MYC and the PAF complex occurs via a second highly conserved region in MYC's amino terminus, MYC box I. Collectively, the data of this work show that turnover of MYC coordinates histone acetylation with recruitment and transfer of elongation factors on RNAPII involving the cooperation of MYC box I and MYC box II.}, subject = {Myc}, language = {en} }