@phdthesis{Dietz2013, author = {Dietz, Lena}, title = {Die Rolle von NFATc1 und NFATc2 bei der Immunpathogenese von Experimenteller Autoimmuner Enzephalomyelitis (EAE), dem Tiermodell der Multiplen Sklerose}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-94569}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Multiple Sklerose (MS) ist eine Autoimmunkrankheit, welche durch Infiltration autoreaktiver Immunzellen in das Zentrale Nervensystem (ZNS) gekennzeichnet ist. Hierbei gelten insbesondere Th1- und Th17-Zellen als wichtige Mediatoren der ZNS-Entz{\"u}ndungsreaktion. Beide T-Helfer-Zellarten k{\"o}nnen durch regulatorische T-Zellen (Tregs) in ihrer Funktion supprimiert werden. NFAT(Nuclear Factors of Activated T cells)-Transkriptionsfaktoren werden nach TCR-Antigen-Stimulation induziert und regeln - als pleiotrope Transkriptionsfaktoren - viele funktionelle Prozesse in T-Zellen. Um die Rolle dieser Faktoren bei der Immunpathogenese von MS zu analysieren, wurden unterschiedliche NFAT-defiziente Mausst{\"a}mme auf den Krankheitsverlauf des Tiermodells Experimentelle Autoimmune Enzephalomyelitis (EAE) hin untersucht. Es konnte gezeigt werden, dass sowohl der einzelne Verlust von NFATc1 und NFATc2 in CD4+ T-Zellen als auch das Fehlen einer spezifischen C-terminalen Proteinmodifikation von NFATc1, die SUMOylierung, sich abmildernd auswirkten. Der verminderte klinische Ausgang der EAE beruhte allerdings je nach knock-out auf unterschiedlichen Mechanismen. Im Fall des T-Zell-spezifischen Verlustes von NFATc1 (Nfatc1fl/fl x Cd4cre+ M{\"a}use), erwies sich die EAE aufgrund einer stark eingeschr{\"a}nkten Aktivierung und Effektorzellentwicklung von CD4+ T-Zellen als vermindert. Dies konnte durch eine reduzierte Produktion an pathogenen Effektorzytokinen, wie IFNγ, IL-17A, GM-CSF sowie IL-22 und weniger an IL-17A+ IFNγ+ Doppelproduzenten im ZNS gezeigt werden. Der Verlust von NFATc2 resultierte in einer starken Th2-Antwort im ZNS von Nfatc2-/- EAE-M{\"a}usen einhergehend mit protektiven IL-4- und IL-10-Produzenten. Interessanterweise konnten auch mehr nicht-pathogene Th17-Zellen nachgewiesen werden. Nfatc1/CΔSUMO CD4+ T-Zellen sezernierten sowohl nach in vitro als auch nach in vivo Stimulation erh{\"o}hte Mengen von IL-2. In vitro Kulturen von Th1- und Th17-Zellen wiesen neben dieser erh{\"o}hten IL-2-Sekretion eine verminderte Produktion von IFNγ und IL-17A auf. In {\"U}bereinstimmung mit diesen in vitro Befunden zeigte sich auch in der EAE ein reduziertes Krankheitsbild mit weniger Th1- und Th17-Zellen, daf{\"u}r aber eine IL-2-gef{\"o}rderte Erh{\"o}hung der Treg-Population. Anhand der Erkenntnis, dass NFAT-Faktoren die (Auto)-Immunreaktion entscheidend beeinflussen, k{\"o}nnte die Inhibition einzelner NFAT-Faktoren ein neues Ziel f{\"u}r eine MS-Therapie darstellen.}, subject = {Immunologie}, language = {de} } @phdthesis{Kaltdorf2020, author = {Kaltdorf, Martin Ernst}, title = {Analyse von regulatorischen Netzwerken bei Zelldifferenzierung und in der Infektionsbiologie}, doi = {10.25972/OPUS-19852}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-198526}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Das zentrale Paradigma der Systembiologie zielt auf ein m{\"o}glichst umfassendes Ver-st{\"a}ndnis der komplexen Zusammenh{\"a}nge biologischer Systeme. Die in dieser Arbeit angewandten Methoden folgen diesem Grundsatz. Am Beispiel von drei auf Basis von Datenbanken und aktueller Literatur rekonstruier-ten Netzwerkmodellen konnte in der hier vorliegenden Arbeit die G{\"u}ltigkeit analyti-scher und pr{\"a}diktiver Algorithmen nachgewiesen werden, die in Form der Analy-sesoftware Jimena angewandt wurden. Die daraus resultierenden Ergebnisse sowohl f{\"u}r die Berechnung von stabilen Systemzust{\"a}nden, der dynamischen Simulation, als auch der Identifikation zentraler Kontrollknoten konnten experimentell validiert wer-den. Die Ergebnisse wurden in einem iterativen Prozess verwendet werden um das entsprechende Netzwerkmodell zu optimieren. Beim Vergleich des Verhaltens des semiquantitativ ausgewerteten regulatorischen Netzwerks zur Kontrolle der Differenzierung humaner mesenchymaler Stammzellen in Chondrozyten (Knorpelbildung), Osteoblasten (Knochenbildung) und Adipozyten (Fett-zellbildung) konnten 12 wichtige Faktoren (darunter: RUNX2, OSX/SP7, SOX9, TP53) mit Hilfe der Berechnung der Bedeutung (Kontrollzentralit{\"a}t der Netzwerkknoten identifi-ziert werden). Der Abgleich des simulierten Verhaltens dieses Netzwerkes ergab eine {\"U}bereinstimmung mit experimentellen Daten von 47,2\%, bei einem widerspr{\"u}chlichen Verhalten von ca. 25\%, dass unter anderem durch die tempor{\"a}re Natur experimentel-ler Messungen im Vergleich zu den terminalen Bedingungen des Berechnung der stabilen Systemzust{\"a}nde erkl{\"a}rt werden kann. Bei der Analyse des Netzwerkmodells der menschlichen Immunantwort auf eine Infek-tion durch A. fumigatus konnten vier Hauptregulatoren identifiziert werden (A. fumi-gatus, Blutpl{\"a}ttchen, hier Platelets genannt, und TNF), die im Zusammenspiel mit wei-teren Faktoren mit hohen Zentralit{\"a}tswerten (CCL5, IL1, IL6, Dectin-1, TLR2 und TLR4) f{\"a}hig sind das gesamte Netzwerkverhalten zu beeinflussen. Es konnte gezeigt werden, dass sich das Aktivit{\"a}tsverhalten von IL6 in Reaktion auf A. fumigatus und die regulato-rische Wirkung von Blutpl{\"a}ttchen mit den entsprechenden experimentellen Resultaten deckt. Die Simulation, sowie die Berechnung der stabilen Systemzust{\"a}nde der Immunantwort von A. thaliana auf eine Infektion durch Pseudomonas syringae konnte zeigen, dass die in silico Ergebnisse mit den experimentellen Ergebnissen {\"u}bereinstimmen. Zus{\"a}tzlich konnten mit Hilfe der Analyse der Zentralit{\"a}tswerte des Netzwerkmodells f{\"u}nf Master-regulatoren identifiziert werden: TGA Transkriptionsfaktor, Jasmons{\"a}ure, Ent-Kaurenoate-Oxidase, Ent-kaurene-Synthase und Aspartat-Semialdehyd-Dehydrogenase. W{\"a}hrend die ersteren beiden bereits lange als wichtige Regulatoren f{\"u}r die Gib-berellin-Synthese bekannt sind, ist die immunregulatorische Funktion von Aspartat-Semialdehyd-Dehydrogenase bisher weitgehend unbekannt.}, subject = {Netzwerksimulation}, language = {de} }