@article{WaeschkeHardgeHancocketal.2014, author = {W{\"a}schke, Nicole and Hardge, Kerstin and Hancock, Christine and Hilker, Monika and Obermaier, Elisabeth and Meiners, Torsten}, title = {Odour Environments: How Does Plant Diversity Affect Herbivore and Parasitoid Orientation?}, series = {PlOS ONE}, volume = {9}, journal = {PlOS ONE}, number = {1}, issn = {1932-6203}, doi = {10.1371/journal.pone.0085152}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117687}, pages = {e85152}, year = {2014}, abstract = {Plant diversity is known to affect success of host location by pest insects, but its effect on olfactory orientation of non-pest insect species has hardly been addressed. First, we tested in laboratory experiments the hypothesis that non-host plants, which increase odour complexity in habitats, affect the host location ability of herbivores and parasitoids. Furthermore, we recorded field data of plant diversity in addition to herbivore and parasitoid abundance at 77 grassland sites in three different regions in Germany in order to elucidate whether our laboratory results reflect the field situation. As a model system we used the herb Plantago lanceolata, the herbivorous weevil Mecinus pascuorum, and its larval parasitoid Mesopolobus incultus. The laboratory bioassays revealed that both the herbivorous weevil and its larval parasitoid can locate their host plant and host via olfactory cues even in the presence of non-host odour. In a newly established two-circle olfactometer, the weevils capability to detect host plant odour was not affected by odours from non-host plants. However, addition of non-host plant odours to host plant odour enhanced the weevils foraging activity. The parasitoid was attracted by a combination of host plant and host volatiles in both the absence and presence of non-host plant volatiles in a Y-tube olfactometer. In dual choice tests the parasitoid preferred the blend of host plant and host volatiles over its combination with non-host plant volatiles. In the field, no indication was found that high plant diversity disturbs host (plant) location by the weevil and its parasitoid. In contrast, plant diversity was positively correlated with weevil abundance, whereas parasitoid abundance was independent of plant diversity. Therefore, we conclude that weevils and parasitoids showed the sensory capacity to successfully cope with complex vegetation odours when searching for hosts.}, language = {en} } @article{RedlichMartinSteffan‐Dewenter2021, author = {Redlich, Sarah and Martin, Emily A. and Steffan-Dewenter, Ingolf}, title = {Sustainable landscape, soil and crop management practices enhance biodiversity and yield in conventional cereal systems}, series = {Journal of Applied Ecology}, volume = {58}, journal = {Journal of Applied Ecology}, number = {3}, doi = {10.1111/1365-2664.13821}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228345}, pages = {507 -- 517}, year = {2021}, abstract = {Input-driven, modern agriculture is commonly associated with large-scale threats to biodiversity, the disruption of ecosystem services and long-term risks to food security and human health. A switch to more sustainable yet highly productive farming practices seems unavoidable. However, an integrative evaluation of targeted management schemes at field and landscape scales is currently lacking. Furthermore, the often-disproportionate influence of soil conditions and agrochemicals on yields may mask the benefits of biodiversity-driven ecosystem services. Here, we used a real-world ecosystem approach to identify sustainable management practices for enhanced functional biodiversity and yield on 28 temperate wheat fields. Using path analysis, we assessed direct and indirect links between soil, crop and landscape management with natural enemies and pests, as well as follow-on effects on yield quantity and quality. A paired-field design with a crossed insecticide-fertilizer experiment allowed us to control for the relative influence of soil characteristics and agrochemical inputs. We demonstrate that biodiversity-enhancing management options such as reduced tillage, crop rotation diversity and small field size can enhance natural enemies without relying on agrochemical inputs. Similarly, we show that in this system controlling pests and weeds by agrochemical means is less relevant than expected for final crop productivity. Synthesis and applications. Our study highlights soil, crop and landscape management practices that can enhance beneficial biodiversity while reducing agrochemical usage and negative environmental impacts of conventional agriculture. The diversification of cropping systems and conservation tillage are practical measures most farmers can implement without productivity losses. Combining local measures with improved landscape management may also strengthen the sustainability and resilience of cropping systems in light of future global change.}, language = {en} }