@phdthesis{Paul2001, author = {Paul, J{\"u}rgen}, title = {The Mouthparts of Ants}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-1179130}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {Ant mandible movements cover a wide range of forces, velocities and precision. The key to the versatility of mandible functions is the mandible closer muscle. In ants, this muscle is generally composed of distinct muscle fiber types that differ in morphology and contractile properties. Volume proportions of the fiber types are species-specific and correlate with feeding habits. Two biomechanical models explain how the attachment angles are optimized with respect to force and velocity output and how filament-attached fibers help to generate the largest force output from the available head capsule volume. In general, the entire mandible closer muscle is controlled by 10-12 motor neurons, some of which exclusively supply specific muscle fiber groups. Simultaneous recordings of muscle activity and mandible movement reveal that fast movements require rapid contractions of fast muscle fibers. Slow and accurate movements result from the activation of slow muscle fibers. Forceful movements are generated by simultaneous co-activation of all muscle fiber types. For fine control, distinct fiber bundles can be activated independently of each other. Retrograde tracing shows that most dendritic arborizations of the different sets of motor neurons share the same neuropil in the suboesophageal ganglion. In addition, some motor neurons invade specific parts of the neuropil. The labiomaxillary complex of ants is essential for food intake. I investigated the anatomical design of the labiomaxillary complex in various ant species focusing on movement mechanisms. The protraction of the glossa is a non muscular movement. Upon relaxation of the glossa retractor muscles, the glossa protracts elastically. I compared the design of the labiomaxillary complex of ants with that of the honey bee, and suggest an elastic mechanism for glossa protraction in honey bees as well. Ants employ two different techniques for liquid food intake, in which the glossa works either as a passive duct (sucking), or as an up- and downwards moving shovel (licking). For collecting fluids at ad libitum food sources, workers of a given species always use only one of both techniques. The species-specific feeding technique depends on the existence of a well developed crop and on the resulting mode of transporting the fluid food. In order to evaluate the performance of collecting liquids during foraging, I measured fluid intake rates of four ant species adapted to different ecological niches. Fluid intake rate depends on sugar concentration and the associated fluid viscosity, on the species-specific feeding technique, and on the extent of specialization on collecting liquid food. Furthermore, I compared the four ant species in terms of glossa surface characteristics and relative volumes of the muscles that control licking and sucking. Both probably reflect adaptations to the species-specific ecological niche and determine the physiological performance of liquid feeding. Despite species-specific differences, single components of the whole system are closely adjusted to each other according to a general rule.}, subject = {Ameisen}, language = {en} } @phdthesis{Nieratschker2008, author = {Nieratschker, Vanessa}, title = {Charakterisierung der Serin-/Threonin-Proteinkinase SRPK3 in Drosophila melanogaster und Phosphorylierungsstudien an Synapsin}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-27806}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {In einer vorangegangenen Arbeit konnte eine hypomorphe Mutation innerhalb des Genlokus einer putativen Serin-/Threonin-Kinase als Ausl{\"o}ser der Aggregatbildung des Aktive-Zone- Proteins Bruchpilot in larvalen Motoneuronaxonen identifiziert werden (Nieratschker, 2004). Aufgrund der Homologien dieser Kinase zu SR-Proteinkinasen wurde der Name Serin- /Threonin-Proteinkinase 3 (SRPK3) vorgeschlagen. Laut urspr{\"u}nglicher Annotation der „Flybase" (http://flybase.bio.indiana.edu) codiert der Genlokus der Srpk3, der auf dem linken Arm des dritten Chromosoms innerhalb der Region 79D4 lokalisiert ist und sich {\"u}ber ca. 10,3 kb erstreckt, f{\"u}r zwei Transkripte (Srpk3-RC und Srpk3-RB). Diese beiden Transkripte haben unterschiedliche Transkriptions- und Translationsstartpunkte und unterscheiden sich in ihrem ersten kodierenden Exon, ab dem vierten Exon sind sie allerdings identisch. Das Srpk3-RCTranskript umfasst ca. 4,2 kb, das Srpk3-RB-Transkript ca. 3,8 kb. Die von diesen Transkripten kodierten Proteine bestehen aus 816 (Srpk3-RC) bzw. 749 (Srpk3-RB) Aminos{\"a}uren. Diese beiden urspr{\"u}nglich annotierten Transkripte konnten durch RT-PCR-Experimente best{\"a}tigt werden. Dabei wurde auch ein zus{\"a}tzliches, alternativ gespleißtes Exon von 159 bp entdeckt, das beiden Transkripten zugeordnet werden kann. Somit codiert der Srpk3-Genlokus f{\"u}r mindestens vier Transkripte, die Transkripte der RC/RF-Transkriptgruppe mit (Srpk3-RF) und ohne (Srpk3-RC) das alternativ gespleißte Exon und die Transkripte der RB/RETranskriptgruppe mit (Srpk3-RE) und ohne (Srpk3-RB) das alternativ gespleißte Exon. Die Existenz eines weiteren Transkriptes Srpk3-RD, die in der aktuellen Version der „Flybase" annotiert ist, konnte durch RT-PCR-Experimente nicht nachgewiesen werden. Zu Beginn dieser Arbeit lag eine hypomorphe Mutante f{\"u}r die SRPK3 schon vor (Srpk3P1; Eberle, 1995). Diese Linie tr{\"a}gt eine P-Elementinsertion innerhalb des ersten Exons der RC/RF-Transkriptgruppe, die das Leseraster dieser Transkriptgruppe zerst{\"o}rt, so dass in dieser Linie nur die RB/RE-Transkriptgruppe gebildet werden kann. Wie bereits erw{\"a}hnt, konnte diese Mutation in vorangegangenen Arbeiten bereits als der Ausl{\"o}ser der Aggregatbildung des Bruchpilot-Proteins in larvalen Motoneuronaxone, sowie einiger Verhaltensdefekte identifiziert werden (Nieratschker, 2004; Bock 2006). Diese Verhaltensdefekte {\"a}hneln stark denen, die durch einen knock-down der Bruchpilot-Expression mittels RNAi ausgel{\"o}st werden (Wagh et al., 2006; Bock, 2006), was auf eine Interaktion beider Proteine schließen l{\"a}sst. Um nun den Beweis f{\"u}hren zu k{\"o}nnen, dass tats{\"a}chlich diese Mutation die beobachteten Ph{\"a}notypen verursacht, wurden Rettungsversuche durchgef{\"u}hrt. Die Srpk3-RF-cDNA war dabei in der Lage die durch die hypomorphe Mutation der SRPK3 verursachten Ph{\"a}notypen vollst{\"a}ndig, oder zumindest teilweise zu retten (vgl. auch Bock, 2006; Bloch, 2007). Damit konnte belegt werden, dass die hypomorphe Mutation der SRPK3 tats{\"a}chlich die in der Mutante Srpk3P1 beobachteten Ph{\"a}notypen verursacht. Um die durch in situ Hybridisierung erhaltenen Daten zur Lokalisation der SRPK3 im larvalen Gehirn (Nieratschker, 2004) best{\"a}tigen, sowie weitere Daten erhalten zu k{\"o}nnen, wurden Isoform-spezifische Antisera gegen die SRPK3 generiert. Diese Antiseren sind in der Lage {\"u}berexprimiertes Protein zu detektieren (Bloch, 2007), allerdings ist es mit diesen Antiseren nicht m{\"o}glich die SRPK3 in wildtypischen Pr{\"a}paraten nachzuweisen. Weitere Daten zur Lokalisation der SRPK3, die durch die Verwendung eines SRPK3-eGFPFusionsproteins erhalten wurden, zeigten, dass eine der ektopisch {\"u}berexprimierten SRPK3- Isoformen mit Bruchpilot an der Aktiven Zone kolokalisiert. Dieses Ergebnis, in Verbindung mit den durch die Mutation der SRPK3 verursachten Bruchpilot-Aggregaten in larvalen Motoneuronaxonen und den Verhaltensdefekten, gibt Hinweise auf eine m{\"o}gliche direkte Interaktion beider Proteine….}, subject = {Drosophila melanogaster}, language = {de} } @phdthesis{Ruchty2010, author = {Ruchty, Markus}, title = {Sensory basis of thermal orientation in leaf-cutting ants}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-48906}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Leaf-cutting ants have a highly developed thermal sense which the insects use to regulate the own body temperature and also to optimize brood and fungus development. Apart from the already described temperature guided behaviors inside the nest it is unknown to what extent the ants may use their thermal sense outside the nest. As part of the present thesis, the question was addressed whether leaf-cutting ants (Atta vollenweideri) are able to learn the position of a warm object as landmark for orientation during foraging. Using absolute conditioning, it was shown that ten training trials are sufficient to elicit the association be-tween food reward and the temperature stimulus. In the test situation (without reward) a significantly higher amount of ants preferred the heated site compared to the unheated con-trol. Importantly, thermal radiation alone was sufficient to establish the learned association and served as orientation cue during the test situation (chapter IV). Based on the experi-mental design used in the previous chapter, the localization of thermosensitive neurons, which detect the underlying thermal stimuli, is restricted to the head or the antennae of the ants. The antennal sensillum coeloconicum is a potential candidate to detect the thermal stimuli during the orientation behavior. In chapter V the sensillum coeloconicum of Atta vollenweideri was investigated concerning its gross morphology, fine-structure and the phy-siology of the associated thermosensitive neuron. The sensillum is predominantly located on the apical antennal segment (antennal tip) where around 12 sensilla are clustered, and it has a peg-in-pit morphology with a double walled, multiporous peg. The sensory peg is deeply embedded in a cuticular pit, connected to the environment only by a tiny aperture. The sen-sillum houses three receptor neurons of which one is thermosensitive whereas the sensory modality of the other two neurons remains to be shown. Upon stimulation with a drop in temperature, the thermosensitve neuron responds with a phasic-tonic increase in neuronal activity (cold-sensitive neuron) and shows rapid adaptation to prolonged stimulation. In ad-dition, it is shown that thermal radiation is an effective stimulus for the thermosensitive neuron. This is the first evidence that sensilla coeloconica play an important role during the thermal orientation behavior described in chapter IV. During the test situation of the classic-al conditioning paradigm, the ants showed rapid antennal movements, indicating that they scan their environment in order to detect the heated object. Rapid antennal movements will result in rapid discontinuities of thermal radiation that re-quire thermosensitive neurons with outstanding sensitivity and high temporal resolution. In Chapter VI the question was addressed whether the thermosensitive neuron of the sensilla coeloconica fulfils these preconditions. Extracellular recordings revealed that the neuron is extremely sensitive to temperature transients and that, due to the response dynamics, an estimated stimulus frequency of up to 5 Hz can be resolved by the neuron. Already a tem-perature increase of only 0.005 °C leads to a pronounced response of the thermosensitive neuron. Through sensory adaptation, the sensitivity to temperature transients is maintained over a wide range of ambient temperatures. The discovered extreme sensitivity, the high temporal resolution and the pronounced adaptation abilities are further evidence support-ing the idea that sensilla coeloconica receive information of the thermal environment, which the ants may use for orientation. In order to understand how the ants use their thermal environment for orientation, it is ne-cessary to know where and how thermal information is processed in their central nervous system. In Chapter VII the question is addressed where in the brain the thermal information, specifically received by the thermosensitive neuron of sensilla coeloconica, is represented. By selectively staining single sensilla coeloconica, the axons of the receptor neurons could be tracked into the antennal lobe of Atta vollenweideri workers. Each of the three axons termi-nated in a single functional unit (glomerulus) of the antennal lobe. Two of the innervated glomeruli were adjacent to each other and are located lateral, while the third one was clear-ly separate and located medial in the antennal lobe. Using two-photon Ca2+ imaging of an-tennal lobe projection neurons, the general representation of thermal information in the antennal lobe was studied. In 11 investigated antennal lobes up to six different glomeruli responded to temperature stimulation in a single specimen. Both, warm- and cold-sensitive glomeruli could be identified. All thermosensitive glomeruli were located in the medial half of the antennal lobe. Based on the correlative evidence of the general representation of thermal information and the results from the single sensilla stainings, it is assumed that thermal information received by sensilla coeloconica is processed in the medial of the three target glomeruli. This part of the thesis shows the important role of the antennal lobe in temperature processing and links one specific thermosensitive neuron to its target region (a single glomerulus). In chapter V it was shown that the sensilla coeloconica are clustered at the antennal tip and have an extraordinary peg-in-pit morphology. In the last chapter of this thesis (Chapter VIII) the question is addressed whether the morphology of the sensilla coeloconica predicts the receptive field of the thermosensitive neuron during the detection of thermal radiation. The sensory pegs of all sensilla coeloconica in the apical cluster have a similar orientation, which was not constraint by the shape of the antennal tip where the cluster is located. This finding indicates that the sensilla coeloconica function as a single unit. Finally the hypothesis was tested whether a single sensillum could be direction sensitive to thermal radiation based on its eye-catching morphology. By stimulating the thermosensitive neuron from various angles around the sensillum this indeed could be shown. This is the last and most significant evi-dence that the sensilla coeloconica may be adapted to detect spatially distributed heated objects in the environment during the thermal landmark orientation of ants.}, subject = {Neurobiologie}, language = {en} } @phdthesis{Bartl2012, author = {Bartl, Jasmin}, title = {Impairment of insulin signaling pathway in Alzheimer's disease}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-74197}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {The neurodegenerative disorder Alzheimer's disease (AD) is the cause of approximately 60\% of the world's 35 million patients suffering from dementia. Current research focuses here are on association with other diseases such as diabetes type 2 (T2DM), possible genetic markers, specific signal transduction pathways within the brain and potential protein modification, because the pathogenesis and etiology of AD are still not fully understood. Specifically association of T2DM with AD came to the focus with the so-called "Rotterdam study" in 1999, indicating that T2DM doubles the risk of developing AD. In the meantime, it is known that the prevalence rate in patients with T2DM is 30\%. Drugs commonly used in the treatment of T2DM such as peroxisome proliferator-activated receptors gamma (PPARγ) agonists show improvement of the cognitive abilities in patients with early stage of dementia, with potential therapeutically relevance. Therefore it is important not only to investigate a link between these diseases, but also to investigate the insulin signaling pathway in the brain of AD patients. In order to investigate this complex issue in more details and demonstrate additional links between T2DM and AD, the present study used several basic biological methods to clarify the question: "Is impaired insulin signaling pathway within the brain crucial for the development of AD?" from several points of view. The methods used in this work have been i) an analysis of single nucleotide (SNP) polymorphism of the insulin-degrading enzyme gene (IDE) in relation to risk of AD and / or of T2DM, ii) post-mortem histochemical studies of brain tissue of patients with only AD, with AD combined with T2DM and with only T2DM compared with an age-matched control group, and iii.) investigations of neurochemical pathways and gene/protein expression changes of a human cell culture as a consequences of amyloid β (Aβ) treatment. After analysis of the IDE SNP polymorphism in the selected VITA (Vienna Trans Danube Aging) cohort disease-specific effects were discovered. The upstream polymorphism (IDE2) was found to influence AD risk in a protective manner, while the downstream polymorphism (IDE7) modified the T2DM risk. Based on the SNP results, the presented study delineate the model that IDE promoter and 3‟ untranslated region/downstream variation can have different effects on IDE expression, maybe a relevant endophenotype with disorder-specific effects on AD and T2DM susceptibility. Furthermore, the human post-mortem studies could show that both AD as well as T2DM patients had a significantly lower density of the insulin receptor (IR) in the hippocampus, whereas a significantly increased density of inactive phosphorylated PPARγ has been found and this persisted even in patients with both diseases. Summarizing the histological study, it was possible to reveal common histological features of AD and T2DM, but no direct connection between the two diseases. Although AD is nowadays not only characterized by amyloid-containing plaque deposits and by the hyperphosphorylation of tau protein, the excessive Aβ42 presence in the brains of AD patients is still playing a key role. Up to date it is still not entirely clear which physical form of Aβ42 is responsible for the development of AD. The present work investigated, what impact has the state of aggregation of Aβ42 on genes and proteins of the insulin signaling pathway and the amyloid cascade. It could be shown that the oligomeric variant enhanced specifically the gene and protein expression of glycogen synthase kinase (GSK) 3β and also the enzyme activity was significantly increased, but has in turn strongly inhibited the IR gene and protein expression. Additionally, the effect of Aβ42 on monoamine oxidase B (MAO-B) was examined. An effect of both aggregated forms of Aβ42 had on enzyme activity was discovered. However, the fibrillar variants led to significantly increased activity of MAO-B while the oligomeric variants inhibited the enzyme activity. Several previous studies have demonstrated the involvement of increased MAO-B activity in AD, but the present work provides for the first time a direct link between the states of aggregation of Aβ42 to enzyme activity. Finally the results of the presented thesis can be summarized to following conclusion: Although AD and T2DM sharing some degrees of common features, still there is a lack of direct association, and therefore the diseases must be considered more independent rather than linked. But the impaired cerebral insulin signaling pathway seems to be another manifested hallmark of AD.}, subject = {Alzheimer-Krankheit}, language = {en} } @phdthesis{Streinzer2013, author = {Streinzer, Martin}, title = {Sexual dimorphism of the sensory systems in bees (Hymenoptera, Apoidea) and the evolution of sex-specific adaptations in the context of mating behavior}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78689}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Bees have had an intimate relationship with humans for millennia, as pollinators of fruit, vegetable and other crops and suppliers of honey, wax and other products. This relationship has led to an extensive understanding of their ecology and behavior. One of the most comprehensively understood species is the Western honeybee, Apis mellifera. Our understanding of sex-specific investment in other bees, however, has remained superficial. Signals and cues employed in bee foraging and mating behavior are reasonably well understood in only a handful of species and functional adaptations are described in some species. I explored the variety of sensory adaptations in three model systems within the bees. Females share a similar ecology and similar functional morphologies are to be expected. Males, engage mainly in mating behavior. A variety of male mating strategies has been described which differ in their spatiotemporal features and in the signals and cues involved, and thus selection pressures. As a consequence, males' sensory systems are more diverse than those of females. In the first part I studied adaptations of the visual system in honeybees. I compared sex and caste-specific eye morphology among 5 species (Apis andreniformis, A. cerana, A. dorsata, A. florea, A. mellifera). I found a strong correlation between body size and eye size in both female castes. Queens have a relatively reduced visual system which is in line with the reduced role of visual perception in their life history. Workers differed in eye size and functional morphology, which corresponds to known foraging differences among species. In males, the eyes are conspicuously enlarged in all species, but a disproportionate enlargement was found in two species (A. dorsata, A. florea). I further demonstrate a correlation between male visual parameters and mating flight time, and propose that light intensities play an important role in the species-specific timing of mating flights. In the second study I investigated eye morphology differences among two phenotypes of drones in the Western honeybee. Besides normal-sized drones, smaller drones are reared in the colony, and suffer from reduced reproductive success. My results suggest that the smaller phenotype does not differ in spatial resolution of its visual system, but suffers from reduced light and contrast sensitivity which may exacerbate the reduction in reproductive success caused by other factors. In the third study I investigated the morphology of the visual system in bumblebees. I explored the association between male eye size and mating behavior and investigated the diversity of compound eye morphology among workers, queens and males in 11 species. I identified adaptations of workers that correlate with distinct foraging differences among species. Bumblebee queens must, in contrast to honeybees, fulfill similar tasks as workers in the first part of their life, and correspondingly visual parameters are similar among both female castes. Enlarged male eyes are found in several subgenera and have evolved several times independently within the genus, which I demonstrate using phylogenetic informed statistics. Males of these species engage in visually guided mating behavior. I find similarities in the functional eye morphology among large-eyed males in four subgenera, suggesting convergent evolution as adaptation to similar visual tasks. In the remaining species, males do not differ significantly from workers in their eye morphology. In the fourth study I investigated the sexual dimorphism of the visual system in a solitary bee species. Males of Eucera berlandi patrol nesting sites and compete for first access to virgin females. Males have enlarged eyes and better spatial resolution in their frontal eye region. In a behavioral study, I tested the effect of target size and speed on male mate catching success. 3-D reconstructions of the chasing flights revealed that angular target size is an important parameter in male chasing behavior. I discuss similarities to other insects that face similar problems in visual target detection. In the fifth study I examined the olfactory system of E. berlandi. Males have extremely long antennae. To investigate the anatomical grounds of this elongation I studied antennal morphology in detail in the periphery and follow the sexual dimorphism into the brain. Functional adaptations were found in males (e.g. longer antennae, a multiplication of olfactory sensilla and receptor neurons, hypertrophied macroglomeruli, a numerical reduction of glomeruli in males and sexually dimorphic investment in higher order processing regions in the brain), which were similar to those observed in honeybee drones. The similarities and differences are discussed in the context of solitary vs. eusocial lifestyle and the corresponding consequences for selection acting on males.}, subject = {Biene}, language = {en} }