@phdthesis{Leingaertner2013, author = {Leing{\"a}rtner, Annette}, title = {Combined effects of climate change and extreme events on plants, arthropods and their interactions}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-87758}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {I. Global climate change directly and indirectly influences biotic and abiotic components of ecosystems. Changes in abiotic ecosystem components caused by climate change comprise temperature increases, precipitation changes and more frequently occurring extreme events. Mediated by these abiotic changes, biotic ecosystem components including all living organisms will also change. Expected changes of plants and animals are advanced phenologies and range shifts towards higher latitudes and altitudes which presumably induce changes in species interactions and composition. Altitudinal gradients provide an optimal opportunity for climate change studies, because they serve as natural experiments due to fast changing climatic conditions within short distances. In this dissertation two different approaches were conducted to reveal species and community responses to climate change. First, species richness and community trait analyses along an altitudinal gradient in the Bavarian Alps (chapters II, III) and second, climate change manipulation experiments under different climatic contexts (chapters IV, V, IV). II. We performed biodiversity surveys of butterfly and diurnal moth species on 34 grassland sites along an altitudinal gradient in the National Park Berchtesgaden. Additionally, we analysed the dominance structure of life-history traits in butterfly assemblages along altitude. Species richness of butterflies and diurnal moths decreased with increasing altitude. The dominance of certain life-history-traits changed along the altitudinal gradient with a higher proportion of larger-winged species and species with higher egg numbers towards higher altitudes. However, the mean egg maturation time, population density and geographic distribution within butterfly assemblages decreased with increasing altitude. Our results indicate that butterfly assemblages were mainly shaped by environmental filtering. We conclude that butterfly assemblages at higher altitudes will presumably lack adaptive capacity to future climatic conditions, because of specific trait combinations. III. In addition to butterfly and diurnal moth species richness we also studied plant species richness in combination with pollination type analyses along the altitudinal gradient. The management type of the alpine grasslands was also integrated in the analyses to detect combined effects of climate and management on plant diversity and pollination type. Plant species richness was highest at intermediate altitudes, whereby the management type influenced the plant diversity with more plant species at grazed compared to mown or non-managed grasslands. The pollination type was affected by both the changing climate along the gradient and the management type. These results suggest that extensive grazing can maintain high plant diversity along the whole altitudinal gradient. With ongoing climate change the diversity peak of plants may shift upwards, which can cause a decrease in biodiversity due to reduced grassland area but also changes in species composition and adaptive potential of pollination types. IV. We set up manipulation experiments on 15 grassland sites along the altitudinal gradient in order to determine the combined effects of extreme climatic events (extreme drought, advanced and delayed snowmelt) and elevation on the nutritional quality and herbivory rates of alpine plants. The leaf CN (carbon to nitrogen) ratio and the plant damage through herbivores were not significantly affected by the simulated extreme events. However, elevation influenced the CN ratios and herbivory rates of alpine plants with contrasting responses between plant guilds. Furthermore, we found differences in nitrogen concentrations and herbivory rates between grasses, legumes and forbs, whereas legumes had the highest nitrogen concentrations and were damaged most. Additionally, CN ratios and herbivory rates increased during the growing season, indicating a decrease of food plant quality during the growing season. Contrasting altitudinal responses of grasses, legumes and forbs presumably can change the dominance structure among these plant guilds with ongoing climate change. V. In this study we analysed the phenological responses of grassland species to an extreme drought event, advanced and delayed snowmelt along the altitudinal gradient. Advanced snowmelt caused an advanced beginning of flowering, whereas this effect was more pronounced at higher than at lower altitudes. Extreme drought and delayed snowmelt had rather low effects on the flower phenology and the responses did not differ between higher and lower sites. The strongest effect influencing flower phenology was altitude, with a declining effect through the season. The length of flowering duration was not significantly influenced by treatments. Our data suggest that plant species at higher altitudes may be more affected by changes in snowmelt timing in contrast to lowland species, as at higher altitudes more severe changes are expected. However, the risk of extreme drought events on flowering phenology seems to be low. VI. We established soil-emergence traps on the advanced snowmelt and control treatment plots in order to detect possible changes in abundances and emergence phenologies of five arthropod orders due to elevation and treatment. Additionally, we analysed the responses of Coleoptera species richness to elevation and treatment. We found that the abundance and species richness of Coleoptera increased with elevation as well as the abundance of Diptera. However, the abundance of Hemiptera decreased with elevation and the abundances of Araneae and Hymenoptera showed no elevational patterns. The advanced snowmelt treatment increased the abundances of Araneae and Hymenoptera. The emergence of soil-hibernating arthropods was delayed up to seven weeks at higher elevations, whereas advanced snowmelt did not influence the emergence phenology of arthropods immediately after snowmelt. With climate change earlier snowmelt will occur more often, which especially will affect soil-hibernating arthropods in alpine regions and may cause desynchronisations between species interactions. VII. In conclusion, we showed that alpine ecosystems are sensitive towards changing climate conditions and extreme events and that many alpine species in the Bavarian Alps are endangered. Many alpine species could exist under warmer climatic conditions, however they are expected to be outcompeted by more competitive lowland species. Furthermore, host-parasite or predator-prey interactions can be disrupted due to different responses of certain guilds to climate change. Understanding and predicting the complex dynamics and potential risks of future climate change remains a great challenge and therefore further studies analysing species and community responses to climate change are needed.}, subject = {Insekten}, language = {en} } @phdthesis{Kehrberger2021, author = {Kehrberger, Sandra}, title = {Effects of climate warming on the timing of flowering and emergence in a tritrophic relationship: plants - bees - parasitoids}, doi = {10.25972/OPUS-21393}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-213932}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The right timing of phenological events is crucial for species fitness. Species should be highly synchronized with mutualists, but desynchronized with antagonists. With climate warming phenological events advance in many species. However, often species do not respond uniformly to warming temperatures. Species-specific responses to climate warming can lead to asynchrony or even temporal mismatch of interacting species. A temporal mismatch between mutualists, which benefit from each other, can have negative consequences for both interaction partners. For host-parasitoid interactions temporal asynchrony can benefit the host species, if it can temporally escape its parasitoid, with negative consequences for the parasitoid species, but benefit the parasitoid species if it increases synchrony with its host, which can negatively affect the host species. Knowledge about the drivers of phenology and the species-specific responses to these drivers are important to predict future effects of climate change on trophic interactions. In this dissertation I investigated how different drivers act on early flowering phenology and how climate warming affects the tritrophic relationship of two spring bees (Osmia cornuta \& Osmia bicornis), an early spring plant (Pulsatilla vulgaris), which is one of the major food plants of the spring bees, and three main parasitoids of the spring bees (Cacoxenus indagator, Anthrax anthrax, Monodontomerus). In Chapter II I present a study in which I investigated how different drivers and their change over the season affect the reproductive success of an early spring plant. For that I recorded on eight calcareous grasslands around W{\"u}rzburg, Germany the intra-seasonal changes in pollinator availability, number of co-flowering plants and weather conditions and studied how they affect flower visitation rates, floral longevity and seed set of the early spring plant P. vulgaris. I show that bee abundances and the number of hours, which allowed pollinator foraging, were low at the beginning of the season, but increased over time. However, flower visitation rates and estimated total number of bee visits were higher on early flowers of P. vulgaris than later flowers. Flower visitation rates were also positively related to seed set. Over time and with increasing competition for pollinators by increasing numbers of co-flowering plants flower visitation rates decreased. My data shows that a major driver for early flowering dates seems to be low interspecific competition for pollinators, but not low pollinator abundances and unfavourable weather conditions. Chapter III presents a study in which I investigated the effects of temperature on solitary bee emergence and on the flowering of their food plant and of co-flowering plants in the field. Therefore I placed bee cocoons of two spring bees (O. cornuta \& O. bicornis) on eleven calcareous grasslands which differed in mean site temperature. On seven of these grasslands the early spring plant P. vulgaris occurred. I show that warmer temperatures advanced mean emergence in O. cornuta males. However, O. bicornis males and females of both species did not shift their emergence. Compared to the bees P. vulgaris advanced its flowering phenology more strongly with warmer temperatures. Co-flowering plants did not shift flowering onset. I suggest that with climate warming the first flowers of P. vulgaris face an increased risk of pollinator limitation whereas for bees a shift in floral resources may occur. In Chapter IV I present a study in which I investigated the effects of climate warming on host-parasitoid relationships. I studied how temperature and photoperiod affect emergence phenology in two spring bees (O. cornuta \& O. bicornis) and three of their main parasitoids (C. indagator, A. anthrax, Monodontomerus). In a climate chamber experiment with a crossed design I exposed cocoons within nest cavities and cocoons outside of nest cavities to two different temperature regimes (long-term mean of W{\"u}rzburg, Germany and long-term mean of W{\"u}rzburg + 4 °C) and three photoperiods (W{\"u}rzburg vs. Sn{\aa}sa, Norway vs. constant darkness) and recorded the time of bee and parasitoid emergence. I show that warmer temperatures advanced emergence in all studied species, but bees advanced less strongly than parasitoids. Consequently, the time period between female bee emergence and parasitoid emergence decreased in the warm temperature treatment compared to the cold one. Photoperiod influenced the time of emergence only in cocoons outside of nest cavities (except O. bicornis male emergence). The data also shows that the effect of photoperiod compared to the effect of temperature on emergence phenology was much weaker. I suggest that with climate warming the synchrony of emergence phenologies of bees and their parasitoids will amplify. Therefore, parasitism rates in solitary bees might increase which can negatively affect reproductive success and population size. In this dissertation I show that for early flowering spring plants low interspecific competition for pollinators with co-flowering plants is a major driver of flowering phenology, whereas other drivers, like low pollinator abundances and unfavourable weather conditions are only of minor importance. With climate warming the strength of different drivers, which act on the timing of phenological events, can change, like temperature. I show that warmer temperatures advance early spring plant flowering more strongly than bee emergence and flowering phenology of later co-flowering plants. Furthermore, I show that warmer temperatures advance parasitoid emergence more strongly than bee emergence. Whereas temperature changes can lead to non-uniform temporal shifts, I demonstrate that geographic range shifts and with that altered photoperiods will not change emergence phenology in bees and their parasitoids. In the tritrophic system I investigated in this dissertation climate warming may negatively affect the reproductive success of the early spring plant and the spring bees but not of the parasitoids, which may even benefit from warming temperatures.}, subject = {Biene }, language = {en} }