@phdthesis{Bertolucci2008, author = {Bertolucci, Franco}, title = {Operant and classical learning in Drosophila melanogaster: the ignorant gene (ign)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-33984}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {One of the major challenges in neuroscience is to understand the neuronal processes that underlie learning and memory. For example, what biochemical pathways underlie the coincidence detection between stimuli during classical conditioning, or between an action and its consequences during operant conditioning? In which neural substructures is this information stored? How similar are the pathways mediating these two types of associative learning and at which level do they diverge? The fly Drosophila melanogaster is an appropriate model organism to address these questions due to the availability of suitable learning paradigms and neurogenetic tools. It permits an extensive study of the functional role of the gene S6KII which in Drosophila had been found to be differentially involved in classical and operant conditioning (Bertolucci, 2002; Putz et al., 2004). Genomic rescue experiments showed that olfactory conditioning in the Tully machine, a paradigm for Pavlovian olfactory conditioning, depends on the presence of an intact S6KII gene. This rescue was successfully performed on both the null mutant and a partial deletion, suggesting that the removal of the phosphorylating unit of the kinase was the main cause of the functional defect. The GAL4/UAS system was used to achieve temporal and spatial control of S6KII expression. It was shown that expression of the kinase during the adult stage was essential for the rescue. This finding ruled out a developmental origin of the mutant learning phenotype. Furthermore, targeted spatial rescue of S6KII revealed a requirement in the mushroom bodies and excluded other brain structures like the median bundle, the antennal lobes and the central complex. This pattern is very similar to the one previously identified with the rutabaga mutant (Zars et al., 2000). Experiments with the double mutant rut, ign58-1 suggest that both rutabaga and S6KII operate in the same signalling pathway. Previous studies had already shown that deviating results from operant and classical conditioning point to different roles for S6KII in the two types of learning (Bertolucci, 2002; Putz, 2002). This conclusion was further strengthened by the defective performance of the transgenic lines in place learning and their normal behavior in olfactory conditioning. A novel type of learning experiment, called "idle experiment", was designed. It is based on the conditioning of the walking activity and represents a purely operant task, overcoming some of the limitations of the "standard" heat-box experiment, a place learning paradigm. The novel nature of the idle experiment allowed exploring "learned helplessness" in flies, unveiling astonishing similarities to more complex organisms such as rats, mice and humans. Learned helplessness in Drosophila is found only in females and is sensitive to antidepressants.}, subject = {Klassische Konditionierung}, language = {en} } @phdthesis{Knapek2010, author = {Knapek, Stephan}, title = {Synapsin and Bruchpilot, two synaptic proteins underlying specific phases of olfactory aversive memory in Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-49726}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Memory is dynamic: shortly after acquisition it is susceptible to amnesic treatments, gets gradually consolidated, and becomes resistant to retrograde amnesia (McGaugh, 2000). Associative olfactory memory of the fruit fly Drosophila melanogaster also shows these features. After a single associative training where an odor is paired with electric shock (Quinn et al., 1974; Tully and Quinn, 1985), flies form an aversive odor memory that lasts for several hours, consisting of qualitatively different components. These components can be dissociated by mutations, their underlying neuronal circuitry and susceptibility to amnesic treatments (Dubnau and Tully, 1998; Isabel et al., 2004; Keene and Waddell, 2007; Masek and Heisenberg, 2008; Xia and Tully, 2007). A component that is susceptible to an amnesic treatment, i.e. anesthesia-sensitive memory (ASM), dominates early memory, but decays rapidly (Margulies et al., 2005; Quinn and Dudai, 1976). A consolidated anesthesia-resistant memory component (ARM) is built gradually within the following hours and lasts significantly longer (Margulies et al., 2005; Quinn and Dudai, 1976). I showed here that the establishment of ARM requires less intensity of shock reinforcement than ASM. ARM and ASM rely on different molecular and/or neuronal processes: ARM is selectively impaired in the radish mutant, whereas for example the amnesiac and rutabaga genes are specifically required for ASM (Dudai et al., 1988; Folkers et al., 1993; Isabel et al., 2004; Quinn and Dudai, 1976; Schwaerzel et al., 2007; Tully et al., 1994). The latter comprise the cAMP signaling pathway in the fly, with the PKA being its supposed major target (Levin et al., 1992). Here I showed that a synapsin null-mutant encoding the evolutionary conserved phosphoprotein Synapsin is selectively impaired in the labile ASM. Further experiments suggested Synapsin as a potential downstream effector of the cAMP/PKA cascade. Similar to my results, Synapsin plays a role for different learning tasks in vertebrates (Gitler et al., 2004; Silva et al., 1996). Also in Aplysia, PKA-dependent phosphorylation of Synapsin has been proposed to be involved in regulation of neurotransmitter release and short-term plasticity (Angers et al., 2002; Fiumara et al., 2004). Synapsin is associated with a reserve pool of vesicles at the presynapse and is required to maintain vesicle release specifically under sustained high frequency nerve stimulation (Akbergenova and Bykhovskaia, 2007; Li et al., 1995; Pieribone et al., 1995; Sun et al., 2006). In contrast, the requirement of Bruchpilot, which is homologous to the mammalian active zone proteins ELKS/CAST (Wagh et al., 2006), is most pronounced in immediate vesicle release (Kittel et al., 2006). Under repeated stimulation of a bruchpilot mutant motor neuron, immediate vesicle release is severely impaired whereas the following steady-state release is still possible (Kittel et al., 2006). In line with that, knockdown of the Bruchpilot protein causes impairment in clustering of Ca2+ channels to the active zones and a lack of electron-dense projections at presynaptic terminals (T-bars). Thus, less synaptic vesicles of the readily-releasable pool are accumulated to the release sites and their release probability is severely impaired (Kittel et al., 2006; Wagh et al., 2006). First, I showed that Bruchpilot is required for aversive olfactory memory and localized the requirement of Bruchpilot to the Kenyon cells of the mushroom body, the second-order olfactory interneurons in Drosophila. Furthermore, I demonstrated that Bruchpilot selectively functions for the consolidated anesthesia-resistant memory. Since Synapsin is specifically required for the labile anesthesia sensitive memory, different synaptic proteins can dissociate consolidated and labile components of olfactory memory and two different modes of neurotransmission (high- vs. low frequency dependent) might differentiate ASM and ARM.}, subject = {Taufliege}, language = {en} } @phdthesis{Niewalda2010, author = {Niewalda, Thomas}, title = {Neurogenetic analyses of pain-relief learning in the fruit fly}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-65035}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {All animals learn in order to cope with challenges imposed on them by their environment. This is true also for both larval and adult fruit flies as exemplified in pavlovian conditioning. The focus of this Thesis is on various aspects of the fruit flies learning ability. My main project deals with two types of learning which we call punishment-learning and pain-relief learning. Punishment learning happens when fruit flies are exposed to an odour which is followed by electric shock. After such training, flies have learned that that odour signals pain and consequently will avoid it in the future. If the sequence of the two stimuli is reversed such that odour follows shock, flies learn the odour as a signal for relief and will later on approach it. I first report a series of experiments investigating qualitative and parametric features of relief-learning; I find that (i) relief learning does result from true associative conditioning, (ii) it requires a relatively high number of training trials, (iii) context-shock training is ineffective for subsequent shock-odour learning. A further question is whether punishment-learning and pain-relief learning share genetic determinants. In terms of genetics, I test a synapsin mutant strain, which lacks all Synapsin protein, in punishment and relief-learning. Punishment learning is significantly reduced, and relief-learning is abolished. Pan-neuronal RNAi-mediated knock-down of Synapsin results in mutant-like phenotypes, confirming the attribution of the phenotype to lack of Synapsin. Also, a rescue of Synapsin in the mushroom body of syn97 mutants restores both punishment- and relief-learning fully, suggesting the sufficiency of Synapsin in the mushroom body for both these kinds of learning. I also elucidate the relationship between perception and physiology in adult fruit flies. I use odour-shock conditioning experiments to identify degrees of similarity between odours; I find that those similarity measures are consistent across generalization and discrimination tasks of diverse difficulty. Then, as collaborator of T. V{\"o}ller and A. Fiala, I investigate how such behavioural similarity/dissimilarity is reflected at the physiological level. I combine the behaviour data with calcium imaging data obtained by measuring the activity patterns of those odours in either the sensory neurons or the projection neurons at the antennal lobe. Our interpretation of the results is that the odours perceptual similarity is organized by antennal lobe interneurons. In another project I investigate the effect of gustatory stimuli on reflexive behaviour as well as their role as reinforcer in larval learning. Drosophila larvae greatly alter their behaviour in presence of sodium chloride. Increasing salt concentration modulates choice behaviour from weakly appetitive to strongly aversive. A similar concentration-behaviour function is also found for feeding: larval feeding is slightly enhanced in presence of low salt concentrations, and strongly decreased in the presence of high salt concentrations. Regarding learning, relatively weak salt concentrations function as appetitive reinforcer, whereas high salt concentrations function as aversive reinforcer. Interestingly, the behaviour-concentration curves are shifted towards higher concentrations from reflexive behaviour (choice behaviour, feeding) as compared to associative learning. This dissociation may reflect a different sensitivity in the respective sensory-motor circuitry.}, subject = {Taufliege}, language = {en} } @phdthesis{Gruber2010, author = {Gruber, Franz Andreas}, title = {Untersuchung zur Regulation der Expression des zuckerkonditionierten Verhaltens bei Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-48802}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {In dieser Doktorarbeit habe ich die Regulation der Expression des zuckerbelohnten Verhaltens durch den F{\"u}tterungszustand bei Drosophila melanogaster untersucht. Die Fliegen k{\"o}nnen w{\"a}hrend einer Trainingsphase mit Hilfe einer Zuckerbelohnung auf einen bestimmten Duft konditioniert werden. Nach dem Training k{\"o}nnen die Fliegen dann auf das olfaktorische Ged{\"a}chtnis getestet werden. Die Bereitschaft das zuckerkonditionierte Ged{\"a}chtnis im Test zu zeigen wird vom F{\"u}tterungszustand kontrolliert, wie ich in {\"U}bereinstimmung mit den Ergebnissen fr{\"u}herer Arbeiten demonstrierte (Tempel et al. 1983; Gruber 2006; Krashes et al. 2008). Nur nicht gef{\"u}tterte Fliegen exprimieren das Ged{\"a}chtnis, w{\"a}hrend F{\"u}tterungen bis kurz vor dem Test eine reversibel supprimierende Wirkung haben. Einen {\"a}hnlichen regulatorischen Einfluss {\"u}bt der Futterentzug auch auf die Expression anderer futterbezogener Verhaltensweisen, wie z.B. die naive Zuckerpr{\"a}ferenz, aus. Nachdem ich den drastischen Einfluss des F{\"u}tterungszustands auf die Auspr{\"a}gung des zuckerkonditionierten Verhaltens gezeigt bzw. best{\"a}tigt hatte, habe ich nach verhaltensregulierenden Faktoren gesucht, die bei einer F{\"u}tterung die Ged{\"a}chtnisexpression unterdr{\"u}cken. Als m{\"o}gliche Kandidaten untersuchte ich Parameter, die zum Teil bereits bei verschiedenen futterbezogenen Verhaltensweisen unterschiedlicher Tierarten als „S{\"a}ttigungssignale" identifiziert worden waren (Marty et al. 2007; Powley and Phillips 2004; Havel 2001; Bernays and Chapman 1974; Simpson and Bernays 1983; Gelperin 1971a). Dabei stellte sich heraus, dass weder die „ern{\"a}hrende" Eigenschaft des Futters, noch ein durch Futteraufnahme bedingter Anstieg der internen Glukosekonzentration f{\"u}r die Suppression des zuckerkonditionierten Ged{\"a}chtnisses notwendig sind. Die Unterdr{\"u}ckung der Ged{\"a}chtnisexpression kann auch nicht durch Unterschiede in den aufgenommenen Futtermengen, die als verhaltensinhibitorische Dehnungssignale des Verdauungstrakts wirken k{\"o}nnten, oder mit der St{\"a}rke des s{\"u}ßen Geschmacks erkl{\"a}rt werden. Die Suppression des zuckerbelohnten Verhaltens folgte den Konzentrationen der gef{\"u}tterten Substanzen und war unabh{\"a}ngig von deren chemischen Spezifit{\"a}t. Deshalb wird die Osmolarit{\"a}t des aufgenommenen Futters als ein entscheidender Faktor f{\"u}r die Unterdr{\"u}ckung der zuckerkonditionierten Ged{\"a}chtnisexpression angenommen. Weil nur inkorporierte Substanzen einen Unterdr{\"u}ckungseffekt hatten, wird ein osmolarit{\"a}tsdetektierender Mechanismus im K{\"o}rper 67 postuliert, wahrscheinlich im Verdauungstrakt und/oder der H{\"a}molymphe. Die H{\"a}molymphosmolarit{\"a}t ist als „S{\"a}ttigungssignal" bei einigen wirbellosen Tieren bereits nachgewiesen worden (Bernays and Chapman 1974; Simpson and Raubenheimer 1993; Gelperin 1971a; Phifer and Prior 1985). Deshalb habe ich mit Hilfe genetischer Methoden und ohne die Fliegen zu f{\"u}ttern, versucht {\"u}ber einen k{\"u}nstlich induzierten Anstieg der Trehaloseund Lipidkonzentrationen die Osmolarit{\"a}t der H{\"a}molymphe in Drosophila zu erh{\"o}hen. Eine solche konzentrationserh{\"o}hende Wirkung f{\"u}r Lipide und die Trehalose, dem Hauptblutzucker der Insekten, ist bereits f{\"u}r das adipokinetische Hormon (AKH), das von Zellen der Corpora cardiaca exprimiert wird, nachgewiesen worden (Kim and Rulifson 2004; Lee and Park 2004; Isabel et al. 2005). Es stellte sich heraus, dass die k{\"u}nstliche Stimulierung AKH-produzierender Neurone das zuckerkonditionierten Verhalten tempor{\"a}r, reversible und selektiv unterdr{\"u}ckt. Gleiche Behandlungen hatten keinen Effekt auf ein aversiv konditioniertes olfaktorisches Ged{\"a}chtnis oder ein naives Zuckerpr{\"a}ferenzverhalten. Wie aus dieser Arbeit hervorgeht, stellt wahrscheinlich die Osmolarit{\"a}t des Verdauungstrakts und der H{\"a}molymphe oder nur der H{\"a}molymphe ein physiologisches Korrelat zum F{\"u}tterungszustand dar und wirkt als unterdr{\"u}ckendes Signal. Dass F{\"u}tterungen das zuckerkonditionierte Verhalten und die Zuckerpr{\"a}ferenz supprimieren, die k{\"u}nstliche Stimulation AKH-produzierender Zellen aber selektiv nur die zuckerbelohnte Ged{\"a}chtnisexpression unterdr{\"u}ckt, deutet auf mindestens zwei unterschiedliche „S{\"a}ttigungssignalwege" hin. Außerdem macht es deutlich wie uneinheitlich futterbezogene Verhaltensweisen, wie das zuckerbelohnte Verhalten und die naive Zuckerpr{\"a}ferenz, reguliert werden.}, subject = {Taufliege}, language = {de} } @phdthesis{Pahl2011, author = {Pahl, Mario}, title = {Honeybee Cognition: Aspects of Learning, Memory and Navigation in a Social Insect}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-66165}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Honeybees (Apis mellifera) forage on a great variety of plant species, navigate over large distances to crucial resources, and return to communicate the locations of food sources and potential new nest sites to nest mates using a symbolic dance language. In order to achieve this, honeybees have evolved a rich repertoire of adaptive behaviours, some of which were earlier believed to be restricted to vertebrates. In this thesis, I explore the mechanisms involved in honeybee learning, memory, numerical competence and navigation. The findings acquired in this thesis show that honeybees are not the simple reflex automats they were once believed to be. The level of sophistication I found in the bees' memory, their learning ability, their time sense, their numerical competence and their navigational abilities are surprisingly similar to the results obtained in comparable experiments with vertebrates. Thus, we should reconsider the notion that a bigger brain automatically indicates higher intelligence.}, subject = {Biene}, language = {en} }