@phdthesis{Kistenpfennig2012, author = {Kistenpfennig, Christa}, title = {Rhodopsin 7 and Cryptochrome - circadian photoreception in Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72209}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Many organisms evolved an endogenous clock to adapt to the daily environmental changes caused by the earth's rotation. Light is the primary time cue ("Zeitgeber") for entrainment of circadian clocks to the external 24-h day. In Drosophila, several visual pigments are known to mediate synchronization to light: The blue-light photopigment Cryptochrome (CRY) and six well-described rhodopsins (Rh1-Rh6). CRY is present in the majority of clock neurons as well as in the compound eyes, whereas the location of rhodopsins is restricted to the photoreceptive organs - the compound eyes, the ocelli and the HB-eyelets. CRY is thought to represent the key photoreceptor of Drosophila's circadian clock. Nevertheless, mutant flies lacking CRY (cry01) are able to synchronize their locomotor activity rhythms to light-dark (LD) cycles, but need significantly longer than wild-type flies. In this behavior, cry01 mutants strongly resemble mammalian species that do not possess any internal photoreceptors and perceive light information exclusively through their photoreceptive organs (eyes). Thus, a mammalian-like phase-shifting behavior would be expected in cry01 flies. We investigated this issue by monitoring a phase response curve (PRC) of cry01 and wild-type flies to 1-h light pulses of 1000 lux irradiance. Indeed, cry01 mutants produced a mammalian-similar so called type 1 PRC of comparatively low amplitude (< 25\% of wild-type) with phase delays to light pulses during the early subjective night and phase advances to light pulses during the late subjective night (~1 h each). Despite the predominant role of CRY, the visual system contributes to the light sensitivity of the fly's circadian clock, mainly around dawn and dusk. Furthermore, this phase shifting allows for the slow re-entrainment which we observed in cry01 mutants to 8-h phase delays of the LD 12 h:12 h cycle. However, cry01 also showed surprising differences in their shifting ability: First of all, their PRC was characterized by a second dead zone in the middle of the subjective night (ZT17-ZT19) in addition to the usual unresponsiveness during the subjective day. Second, in contrast to wild-type flies, cry01 mutants did not increase their shift of activity rhythms neither in response to longer stimuli nor to light pulses of higher irradiance. In contrast, both 6-h light pulses of 1000 lux and 1-h light pulses of 10,000 lux light intensity during the early subjective night even resulted in phase advances instead of the expected delays. Thus, CRY seems to be not only responsible for the high light sensitivity of the wild-type circadian clock, but is apparently also involved in integrating and processing light information. Rhodopsin 7 (Rh7) is a yet uncharacterized protein, but became a good photoreceptor candidate due to sequence similarities to the six known Drosophila Rhs. The second part of this thesis investigated the expression pattern of Rh7 and its possible functions, especially in circadian photoreception. Furthermore, we were interested in a potential interaction with CRY and thus, tested cry01 and rh70 cry01 mutants as well. Rh1 is the main visual pigment of the Drosophila compound eye and expressed in six out of eight photoreceptors cells (R1-R6) in each of the ~800 ommatidia. Motion vision depends exclusively on Rh1 function but, moreover, Rh1 plays an important structural role and assures proper photoreceptor cell development and maintenance. In order to investigate its possible photoreceptive function, we expressed Rh7 in place of Rh1. Rh7 was indeed able to overtake the role of Rh1 in both aspects: It prevented retinal degeneration and mediated the optomotor response (OR), a motion vision-dependent behavior. At the transcriptional level, rh7 is expressed at approximately equal amounts in adult fly brains and retinas. Due to a reduced specificity of anti-Rh7 antibodies, we could not verify this result at the protein level. However, analysis of rh7 null mutants (rh70) suggested different Rh7 functions in vivo. Previous experiments strongly indicated an increased sensitivity of the compound eyes in the absence of Rh7 and suggested impaired light adaptation. We aimed to test this hypothesis at the levels of circadian photoreception. Locomotor activity rhythms are a reliable output of the circadian clock. Rh70 mutant flies generally displayed a wild-type similar bimodal activity pattern comprising morning (M) and evening (E) activity bouts. Activity monitoring supported the proposed "shielding" function, since rh70 mutants behaved like wild-type flies experiencing high irradiances. Under all investigated conditions, their activity peaks lay further apart resulting in a prolonged midday break. The behavior of cry01 mutants was mainly characterized by an unexpectedly high flexibility in the timing of M and E activity bouts which allowed tracking of lights-on and lights-off even under extreme photoperiods. Activity profiles of the corresponding rh70 cry01 double mutants reflected neither synergistic nor antagonistic effects of Rh7 and CRY and were dominated by a broad E activity peak. In the future, the different circadian phenotypes will be further investigated on the molecular level by analysis of clock protein cycling in the underlying pacemaker neurons. The work of this thesis confirmed that Rh7 is indeed able to work as a photoreceptor and to initiate the classical phototransduction cascade. On the other hand, it provided further evidence at the levels of circadian photoreception that Rh7 might serve as a shielding pigment for Rh1 in vivo, thereby mediating proper light adaptation.}, language = {en} }