@phdthesis{Hart2004, author = {Hart, Stefan}, title = {Characterisation of the molecular mechanisms of EGFR signal transactivation in human cancer}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-10067}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {In a variety of established tumour cell lines, but also in primary mammary epithelial cells metalloprotease-dependent transactivation of the EGFR, and EGFR characteristic downstream signalling events were observed in response to stimulation with physiological concentrations of GPCR agonists such as the mitogens LPA and S1P as well as therapeutically relevant concentrations of cannabinoids. Moreover, this study reveals ADAM17 and HB-EGF as the main effectors of this mechanism in most of the cancer cell lines investigated. However, depending on the cellular context and GPCR agonist, various different members of the ADAM family are selectively recruited for specific ectodomain shedding of proAR and/or proHB-EGF and subsequent EGFR activation. Furthermore, biological responses induced by LPA or S1P such as migration in breast cancer and HNSCC cells, depend on ADAM17 and proHB-EGF/proAR function, respectively, suggesting that highly abundant GPCR ligands may play a role in tumour development and progression. Moreover, EGFR signal transactivation could be identified as the mechanistic link between cannabinoid receptors and the activation of mitogen activated protein kinases (MAPK) ERK1/2 as well as pro-survival Akt/PKB signalling. Depending on the cellular context, cannabinoid-induced signal cross-communication was mediated by shedding of proAmphiregulin and/or proHB-EGF by ADAM17. Most importantly, our data show that concentrations of THC comparable to those detected in the serum of patients after THC administration accelerate proliferation of cancer cells instead of apoptosis and thereby may contribute to cancer progression in patients.}, subject = {Epidermaler Wachstumsfaktor-Rezeptor}, language = {en} } @phdthesis{Schneider2011, author = {Schneider, Matthias}, title = {Characterisation of Metalloprotease-mediated EGFR Signal Transactivation after GPCR Stimulation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-65105}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {In the context of metalloprotease-mediated transactivation of the epidermal growth factor receptor, different monoclonal antibodies against ADAM17 / TACE were characterized for their ability to block the sheddase. Activity of some of them was observed at doses between 2µg/mL and 10µg/mL. Kinetic analyses showed their activity starting at around 30 minutes. In cellular assays performed with the antibodies, especially upon treatment of cells with sphingosine-1-phosphate a reduction in proliferation was observed with some candidates. Moreover this study provides potential new roles for ß-Arrestins. Their involvement in the triple membrane-passing signal pathway of EGFR transactivation was shown. Furthermore, in overexpressing cellular model systems, an interaction between ADAM17 and ß-Arrestin1 could be observed. Detailed analysis discovered that phosphorylation of ß-Arrestin1 is crucial for this interaction. Additionally, the novel mechanism of UV-induced EGFR transactivation was extended to squamous cell carcinoma. The mechanism happens in a dose dependent manner and requires a metalloprotease to shed the proligand Amphiregulin. The involvement of both ADAM9 and ADAM17, being the metalloproteases responsible for this cleavage, was shown for SCC9 cells.}, subject = {Epidermaler Wachstumsfaktor-Rezeptor}, language = {en} } @phdthesis{Scholz2017, author = {Scholz, Nicole}, title = {Genetic analyses of sensory and motoneuron physiology in Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123249}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {During my PhD I studied two principal biological aspects employing Drosophila melanogaster. Therefore, this study is divided into Part I and II. Part I: Bruchpilot and Complexin interact to regulate synaptic vesicle tethering to the active zone cytomatrix At the presynaptic active zone (AZ) synaptic vesicles (SVs) are often physically linked to an electron-dense cytomatrix - a process referred to as "SV tethering". This process serves to concentrate SVs in close proximity to their release sites before contacting the SNARE complex for subsequent fusion (Hallermann and Silver, 2013). In Drosophila, the AZ protein Bruchpilot (BRP) is part of the proteinous cytomatrix at which SVs accumulate (Kittel et al., 2006b; Wagh et al., 2006; Fouquet et al., 2009). Intriguingly, truncation of only 1\% of the C-terminal region of BRP results in a severe defect in SV tethering to this AZ scaffold (hence named brpnude; Hallermann et al., 2010b). Consistent with these findings, cell-specific overexpression of a C-terminal BRP fragment, named mBRPC-tip (corresponds to 1\% absent in brpnude; m = mobile) phenocopied the brpnude mutant in behavioral and functional experiments. These data indicate that mBRPC-tip suffices to saturate putative SV binding sites, which induced a functional tethering deficit at motoneuronal AZs. However, the molecular identity of the BRP complement to tether SVs to the presynaptic AZ scaffold remains unknown. Moreover, within larval motoneurons membrane-attached C-terminal portions of BRP were sufficient to tether SVs to sites outside of the AZ. Based on this finding a genetic screen was designed to identify BRP interactors in vivo. This screen identified Complexin (CPX), which is known to inhibit spontaneous SV fusion and to enhance stimulus evoked SV release (Huntwork and Littleton, 2007; Cho et al., 2010; Martin et al., 2011). However, so far CPX has not been associated with a function upstream of priming/docking and release of SVs. This work provides morphological and functional evidence, which suggests that CPX promotes recruitment of SVs to the AZ and thereby curtails synaptic short-term depression. Together, the presented findings indicate a functional interaction between BRP and CPX at Drosophila AZs. Part II: The Adhesion-GPCR Latrophilin/CIRL shapes mechanosensation The calcium independent receptor of α-latrotoxin (CIRL), also named Latrophilin, represents a prototypic Adhesion class G-protein coupled-receptor (aGPCR). Initially, Latrophilin was identified based on its capacity to bind the α-component of latrotoxin (α-LTX; Davletov et al., 1996; Krasnoperov et al., 1996), which triggers massive exocytotic activity from neurons of the peripheral nervous system (Scheer et al., 1984; Umbach et al., 1998; Orlova et al., 2000). As a result Latrophilin is considered to play a role in synaptic transmission. Later on, Latrophilins have been associated with other biological processes including tissue polarity (Langenhan et al., 2009), fertility (Pr{\"o}mel et al., 2012) and synaptogenesis (Silva et al., 2011). However, thus far its subcellular localization and the identity of endogenous ligands, two aspects crucial for the comprehension of Latrophilin's in vivo function, remain enigmatic. Drosophila contains only one latrophilin homolog, named dCirl, whose function has not been investigated thus far. This study demonstrates abundant dCirl expression throughout the nervous system of Drosophila larvae. dCirlKO animals are viable and display no defects in development and neuronal differentiation. However, dCirl appears to influence the dimension of the postsynaptic sub-synaptic reticulum (SSR), which was accompanied by an increase in the postsynaptic Discs-large abundance (DLG). In contrast, morphological and functional properties of presynaptic motoneurons were not compromised by the removal of dCirl. Instead, dCirl is required for the perception of mechanical challenges (acoustic-, tactile- and proprioceptive stimuli) through specialized mechanosensory devices, chordotonal organs (Eberl, 1999). The data indicate that dCirl modulates the sensitivity of chordotonal neurons towards mechanical stimulation and thereby adjusts their input-output relation. Genetic interaction analyses suggest that adaption of the molecular mechanotransduction machinery by dCirl may underlie this process. Together, these results uncover an unexpected function of Latrophilin/dCIRL in mechanosensation and imply general modulatory roles of aGPCR in mechanoception.}, subject = {Drosophila}, language = {en} } @phdthesis{Liu2022, author = {Liu, Ruiqi}, title = {Dynamic regulation of the melanocortin 4 receptor system in body weight homeostasis and reproductive maturation in fish}, doi = {10.25972/OPUS-20653}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-206536}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Puberty is an important period of life with physiological changes to enable animals to reproduce. Xiphophorus fish exhibit polymorphism in body size, puberty timing, and reproductive tactics. These phenotypical polymorphisms are controlled by the Puberty (P) locus. In X. nigrensis and X. multilineatus, the P locus encodes the melanocortin 4 receptor (Mc4r) with high genetic polymorphisms. Mc4r is a member of the melanocortin receptors, belonging to class A G-protein coupled receptors. The Mc4r signaling system consists of Mc4r, the agonist Pomc (precursor of various MSH and of ACTH), the antagonist Agrp and accessory protein Mrap2. In humans, MC4R has a role in energy homeostasis. MC4R and MRAP2 mutations are linked to human obesity but not to puberty. Mc4rs in X. nigrensis and X. multilineatus are present in three allele classes, A, B1 and B2, of which the X-linked A alleles express functional receptors and the male-specific Y-linked B alleles encode defective receptors. Male body sizes are correlated with B allele type and B allele copy numbers. Late-maturing large males carry B alleles in high copy number while early-maturing small males carry B alleles in low copy number or only A alleles. Cell culture co-expression experiments indicated that B alleles may act as dominant negative receptor mutants on A alleles. In this study, the main aim was to biochemically characterize the mechanism of puberty regulation by Mc4r in X. nigrensis and X. multilineatus, whether it is by Mc4r dimerization and/or Mrap2 interaction with Mc4r or other mechanisms. Furthermore, Mc4r in X. hellerii (another swordtail species) and medaka (a model organism phylogenetically close to Xiphophorus) were investigated to understand if the investigated mechanisms are conserved in other species. In medaka, the Mc4r signaling system genes (mc4r, mrap2, pomc, agrp1) are expressed before hatching, with agrp1 being highly upregulated during hatching and first feeding. These genes are mainly expressed in adult brain, and the transcripts of mrap2 co-localize with mc4r indicating a function in modulating Mc4r signaling. Functional comparison between wild-type and mc4r knockout medaka showed that Mc4r knockout does not affect puberty timing but significantly delays hatching due to the retarded embryonic development of knockout medaka. Hence, the Mc4r system in medaka is involved in regulation of growth rather than puberty. In Xiphophorus, expression co-localization of mc4r and mrap2 in X. nigrensis and X. hellerii fish adult brains was characterized by in situ hybridization. In both species, large males exhibit strikingly high expression of mc4r while mrap2 shows similar expression level in the large and small male and female. Differently, X. hellerii has only A-type alleles indicating that the puberty regulation mechanisms evolved independently in Xiphophorus genus. Functional analysis of Mrap2 and Mc4r A/B1/B2 alleles of X. multilineatus showed that increased Mrap2 amounts induce higher cAMP response but EC50 values do not change much upon Mrap2 co-expression with Mc4r (expressing only A allele or A and B1 alleles). A and B1 alleles were expressed higher in large male brains, while B2 alleles were only barely expressed. Mc4r A-B1 cells have lower cAMP production than Mc4r A cells. Together, this indicates a role of Mc4r alleles, but not Mrap2, in puberty onset regulation signaling. Interaction studies by FRET approach evidenced that Mc4r A and B alleles can form heterodimers and homodimers in vitro, but only for a certain fraction of the expressed receptors. Single-molecule colocalization study using super-resolution microscope dSTORM confirmed that only few Mc4r A and B1 receptors co-localized on the membrane. Altogether, the species-specific puberty onset regulation in X. nigrensis and X. multilineatus is linked to the presence of Mc4r B alleles and to some extent to its interaction with A allele gene products. This is reasoned to result in certain levels of cAMP signaling which reaches the dynamic or static threshold to permit late puberty in large males. In summary, puberty onset regulation by dominant negative effect of Mc4r mutant alleles is a special mechanism that is found so far only in X. nigrensis and X. multilineatus. Other Xiphophorus species obviously evolved the same function of the pathway by diverse mechanisms. Mc4r in other fish (medaka) has a role in regulation of growth, reminiscent of its role in energy homeostasis in humans. The results of this study will contribute to better understand the biochemical and physiological functions of the Mc4r system in vertebrates including human.}, subject = {Japank{\"a}rpfling}, language = {en} }