@phdthesis{Masek2005, author = {Masek, Pavel}, title = {Odor intensity learning in Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-15546}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {It has been known for a long time that Drosophila can learn to discriminate not only between different odorants but also between different concentrations of the same odor. Olfactory associative learning has been described as a pairing between odorant and electric shock and since then, most of the experiments conducted in this respect have largely neglected the dual properties of odors: quality and intensity. For odorant-coupled short-term memory, a biochemical model has been proposed that mainly relies on the known cAMP signaling pathway. Mushroom bodies (MB) have been shown to be necessary and sufficient for this type of memory, and the MB-model of odor learning and short-term memory was established. Yet, theoretically, based on the MB-model, flies should not be able to learn concentrations if trained to the lower of the two concentrations in the test. In this thesis, I investigate the role of concentration-dependent learning, establishment of a concentration-dependent memory and their correlation to the standard two-odor learning as described by the MB-model. In order to highlight the difference between learning of quality and learning of intensity of the same odor I have tried to characterize the nature of the stimulus that is actually learned by the flies, leading to the conclusion that during the training flies learn all possible cues that are presented at the time. The type of the following test seems to govern the usage of the information available. This revealed a distinction between what flies learned and what is actually measured. Furthermore, I have shown that learning of concentration is associative and that it is symmetrical between high and low concentrations. I have also shown how the subjective quality perception of an odor changes with changing intensity, suggesting that one odor can have more than one scent. There is no proof that flies perceive a range of concentrations of one odorant as one (odor) quality. Flies display a certain level of concentration invariance that is limited and related to the particular concentration. Learning of concentration is relevant only to a limited range of concentrations within the boundaries of concentration invariance. Moreover, under certain conditions, two chemically distinct odorants could smell sufficiently similarly such, that they can be generalized between each other like if they would be of the same quality. Therefore, the abilities of the fly to identify the difference in quality or in intensity of the stimuli need to be distinguished. The way how the stimulus is analyzed and processed speaks in favor of a concept postulating the existence of two separated memories. To follow this concept, I have proposed a new form of memory called odor intensity memory (OIM), characterized it and compared it to other olfactory memories. OIM is independent of some members of the known cAMP signaling pathway and very likely forms the rutabaga-independent component of the standard two-odor memory. The rutabaga-dependent odor memory requires qualitatively different olfactory stimuli. OIM is revealed within the limits of concentration invariance where the memory test gives only sub-optimal performance for the concentration differences but discrimination of odor quality is not possible at all. Based on the available experimental tools, OIM seems to require the mushroom bodies the same as odor-quality memory but its properties are different. Flies can memorize the quality of several odorants at a given time but a newly formed memory of one odor interferes with the OIM stored before. In addition, the OIM lasts only 1 to 3 hours - much shorter than the odor-quality memory.}, subject = {Taufliege}, language = {en} } @phdthesis{Groh2005, author = {Groh, Claudia}, title = {Environmental influences on the development of the female honeybee brain Apis mellifera}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-17388}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {F{\"u}r die Honigbiene spielt der Geruchssinn eine entscheidende Rolle bei der Kommunikation innerhalb des Sozialstaates. Kastenspezifische, auf uweltbedingten Einfl{\"u}ssen basierende sowie altersbedingte Unterschiede im olfaktorisch gesteuerten Verhalten liefern ein hervorragendes Modellsystem f{\"u}r diese Studie, um die Entwicklung und Funktion neuronaler Plastizit{\"a}t im olfaktorischen System zu untersuchen. Diese Studie konzentriert sich auf Unterschiede zwischen K{\"o}niginnen und Arbeiterinnen, den beiden weiblichen Kasten innerhalb des Bienestaates, sowie auf umweltbedingte Plastizit{\"a}t. Diploide Eier, aus denen sich K{\"o}niginnen und Arbeiterinnen entwickeln, sind genetisch identisch. Dennoch entwickeln sich K{\"o}niginnen wesentlich schneller zum Adulttier als Arbeiterinnen, sind als Imago gr{\"o}ßer, leben wesentlich l{\"a}nger und zeigen andere Verhaltensweisen. Diese Unterschiede werden durch eine differentielle larvale F{\"u}tterung initiiert. Im Anschluss an das Larvenstadium und somit nach erfolgter Kastendetermination, entwickeln sich die Bienen {\"u}ber eine Puppenphase (verdeckelte Phase) zum Imago. Adulte Bienen klimatisieren das zentrale Brutareal auf einer mittleren Temperatur von 35°C konstant. Bienen, die bei niedrigeren Temperaturen innerhalb des physiologisch relevanten Bereichs aufwachsen, weisen Defizite im olfaktorischen Lernverhalten und in der Tanzkommunikation auf. M{\"o}gliche neuronale Korrelate f{\"u}r altersbedingte, temperatur- und kastenspezifische Unterschiede im olfaktorisch gesteuerten Verhalten sollten in dieser Arbeit betrachtet werden. Die strukturellen Analysen konzentrierten sich dabei auf prim{\"a}re (Antennalloben) und sekund{\"a}re (Pilzk{\"o}rper-Calyces)olfaktorische Verarbeitungszentren im Gehirn von sich entwickelnden und adulten Tieren beider Kasten. Synchron verdeckelte Brutzellen beider Kasten wurden unter kontrollierten Bedingungen im Inkubator herangezogen. Neuroanatomische Untersuchungen wurden an fixierten Gewebeschnitten mittels einer Doppelfluoreszenzf{\"a}rbung mit Fluor-Phalloidin und anti-Synapsin Immuncytochemie durchgef{\"u}hrt. Diese Doppelmarkierung erm{\"o}glichte die Visualisierung und Quantifizierung individueller Synapsenkomplexe (Microglomeruli) im Pilzk{\"o}rper-Calyx. Phalloidin bindet an verschiedene F-Aktin Isoformen und kann zum Nachweis von F-Aktin im Insektennervensystem verwendet werden. F-Aktin wird w{\"a}hrend der Entwicklung in Wachstumskegeln und in adulten Gehirnen in pr{\"a}synaptischen Endigungen und dendritischen Dornen exprimiert. Pr{\"a}synaptische Elemente wurden durch den Einsatz eines spezifischen Antik{\"o}rpers gegen das Drosophila-Vesikeltransportprotein Synapsin I charakterisiert. Mit Hilfe der konfokalen Laser-Scanning Mikroskopie wurde die exakte r{\"a}umliche Zuordnung der Fluoreszenzsignale anhand optischer Schnitte durch die Pr{\"a}parate realisiert. Anhand dieser Methodik konnten erstmals {\"u}ber reine Volumenanalysen hinausgehende Messungen zur synaptischen Strukturplastizit{\"a}t im Pilzk{\"o}rper-Calyx durchgef{\"u}hrt werden. Die Untersuchungen an Gehirnen in den verschiedenen Puppenstadien zeigten Unterschiede im Entwicklungsverlauf der Gehirne mit dem Fokus auf die Bildung antennaler Glomeruli und calycaler Microglomeruli. Unterschiede in der Gehirnentwicklung verdeutlichten die ontogenetische Plastizit{\"a}t des Gehirns der Honigbiene. Entsprechend der k{\"u}rzeren Puppenphase der K{\"o}niginnen bildeten sich sowohl antennale Glomeruli als auch alle Untereinheiten (Lippe, Collar, Basalring) des Calyx etwa drei Tage fr{\"u}her aus. Direkt nach dem Schlupf zeigten quantitative Analysen innerhalb der Pilzk{\"o}rper-Calyces eine signifikant geringere Anzahl an Microglomeruli bei K{\"o}niginnen. Diese neuronale Strukturplastizit{\"a}t auf verschiedenen Ebenen der olfaktorischen Informationsverarbeitung korreliert mit der kastenspezifischen Arbeitsteilung. Die Arbeit liefert Erkenntnisse {\"u}ber den Einfluss eines wichtigen kontrollierten Umweltparameters, der Bruttemperatur, w{\"a}hrend der Puppenphase auf die synaptische Organisation der adulten Pilzk{\"o}rper-Calyces. Bereits geringe Unterschiede in der Aufzuchtstemperatur (1°C) beeinflussten signifikant die Anzahl von Microglomeruli in der Lippenregion des Calyx beider weiblicher Kasten. Die maximale Anzahl an MG entwickelte sich bei Arbeiterinnen bei 34.5°C, bei K{\"o}niginnen aber bei 33.5°C. Neben dieser entwicklungsbedingten neuronalen Plastizit{\"a}t zeigt diese Studie eine starke altersbedingte Strukturplastizit{\"a}t der MG w{\"a}hrend der relativ langen Lebensdauer von Bienenk{\"o}niginnen. Hervorzuheben ist, dass die Anzahl an MG in der olfaktorischen Lippenregion mit dem Alter anstieg (~55\%), in der angrenzenden visuellen Collarregion jedoch abnahm (~33\%). Die in der vorliegenden Arbeite erstmals gezeigte umweltbedingte Entwicklungsplastizit{\"a}t sowie altersbedingte synaptische Strukturplastizit{\"a}t in den sensorischen Eingangsregionen der Pilzk{\"o}rper-Calyces k{\"o}nnte kasten- und altersspezifischen Anpassungen im Verhalten zugrunde liegen.}, subject = {Biene}, language = {en} } @phdthesis{Thum2006, author = {Thum, Andreas Stephan}, title = {Sugar reward learning in Drosophila : neuronal circuits in Drosophila associative olfactory learning}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-17930}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Genetic intervention in the fly Drosophila melanogaster has provided strong evidence that the mushroom bodies of the insect brain act as the seat of memory traces for aversive and appetitive olfactory learning (reviewed in Heisenberg, 2003). In flies, electroshock is mainly used as negative reinforcer. Unfortunately this fact complicates a comparative consideration with other inscets as most studies use sugar as positive reinforcer. For example, several lines of evidence from honeybee and moth have suggested another site, the antennal lobe, to house neuronal plasticity underlying appetitive olfactory memory (reviewed in Menzel, 2001; Daly et al., 2004). Because of this I focused my work mainly on appetitive olfactory learning. In the first part of my thesis, I used a novel genetic tool, the TARGET system (McGuire et al., 2003), which allows the temporally controlled expression of a given effector gene in a defined set of cells. Comparing effector genes which either block neurotransmission or ablate cells showed important differences, revealing that selection of the appropriate effector gene is critical for evaluating the function of neural circuits. In the second part, a new engram of olfactory memory in the Drosophila projection neurons is described by restoring Rutabaga adenlylate cyclase (rut-AC) activity specifically in these cells. Expression of wild-type rutabaga in the projection neurons fully rescued the defect in sugar reward memory, but not in aversive electric shock memory. No difference was found in the stability of the appetitive memories rescued either in projection neurons or Kenyon cells. In the third part of the thesis I tried to understand how the reinforcing signals for sugar reward are internally represented. In the bee Hammer (1993) described a single octopaminergic neuron - called VUMmx1 - that mediates the sugar stimulus in associative olfactory reward learning. Analysis of single VUM neurons in the fly (Selcho, 2006) identified a neuron with a similar morphology as the VUMmx1 neuron. As there is a mutant in Drosophila lacking the last enzymatic step in octopamine synthesis (Monastirioti et al., 1996), Tyramine beta Hydroxylase, I was able to show that local Tyramine beta Hydroxylase expression successfully rescued sugar reward learning. This allows to conclude that about 250 cells including the VUM cluster are sufficient for mediating the sugar reinforcement signal in the fly. The description of a VUMmx1 similar neuron and the involvement of the VUM cluster in mediating the octopaminergic sugar stimulus are the first steps in establishing a neuronal map for US processing in Drosophila. Based on this work several experiments are contrivable to reach this ultimate goal in the fly. Taken together, the described similiarities between Drosophila and honeybee regarding the memory organisation in MBs and PNs and the proposed internal representation of the sugar reward suggest an evolutionarily conserved mechanism for appetitive olfactory learning in insects.}, subject = {Taufliege}, language = {en} } @phdthesis{Zube2008, author = {Zube, Christina}, title = {Neuronal representation and processing of chemosensory communication signals in the ant brain}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-30383}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Ants heavily rely on olfaction for communication and orientation and ant societies are characterized by caste- and sex-specific division of labor. Olfaction plays a key role in mediating caste-specific behaviours. I investigated whether caste- and sex-specific differences in odor driven behavior are reflected in specific differences and/or adaptations in the ant olfactory system. In particular, I asked the question whether in the carpenter ant, Camponotus floridanus, the olfactory pathway exhibits structural and/or functional adaptations to processing of pheromonal and general odors. To analyze neuroanatomical specializations, the central olfactory pathway in the brain of large (major) workers, small (minor) workers, virgin queens, and males of the carpenter ant C. floridanus was investigated using fluorescent tracing, immunocytochemistry, confocal microscopy and 3D-analyzes. For physiological analyzes of processing of pheromonal and non-pheromonal odors in the first odor processing neuropil , the antennal lobe (AL), calcium imaging of olfactory projection neurons (PNs) was applied. Although different in total glomerular volumes, the numbers of olfactory glomeruli in the ALs were similar across the female worker caste and in virgin queens. Here the AL contains up to ~460 olfactory glomeruli organized in 7 distinct clusters innervated via 7 antennal sensory tracts. The AL is divided into two hemispheres regarding innervations of glomeruli by PNs with axons leaving via a dual output pathway. This pathway consists of the medial (m) and lateral (l) antenno-cerebral tract (ACT) and connects the AL with the higher integration areas in the mushroom bodies (MB) and the lateral horn (LH). M- and l-ACT PNs differ in their target areas in the MB calyx and the LH. Three additional ACTs (mediolateral - ml) project to the lateral protocerebrum only. Males had ~45\% fewer glomeruli compared to females and one of the seven sensory tracts was absent. Despite a substantially smaller number of glomeruli, males possess a dual PN output pathway to the MBs. In contrast to females, however, only a small number of glomeruli were innervated by projection neurons of the m-ACT. Whereas all glomeruli in males were densely innervated by serotonergic processes, glomeruli innervated by sensory tract six lacked serotonergic innervations in the female castes. It appears that differences in general glomerular organization are subtle among the female castes, but sex-specific differences in the number, connectivity and neuromodulatory innervations of glomeruli are substantial and likely to promote differences in olfactory behavior. Calcium imaging experiments to monitor pheromonal and non-pheromonal processing in the ant AL revealed that odor responses were reproducible and comparable across individuals. Calcium responses to both odor groups were very sensitive (10-11 dilution), and patterns from both groups were partly overlapping indicating that processing of both odor classes is not spatially segregated within the AL. Intensity response patterns to the pheromone components tested (trail pheromone: nerolic acid; alarm pheromone: n-undecane), in most cases, remained invariant over a wide range of intensities (7-8 log units), whereas patterns in response to general odors (heptanal, octanol) varied across intensities. Durations of calcium responses to stimulation with the trail pheromone component nerolic acid increased with increasing odor concentration indicating that odor quality is maintained by a stable pattern (concentration invariance) and intensity is mainly encoded in the response durations of calcium activities. For n-undecane and both general odors increasing response dynamics were only monitored in very few cases. In summary, this is the first detailed structure-function analyses within the ant's central olfactory system. The results contribute to a better understanding of important aspects of odor processing and olfactory adaptations in an insect's central olfactory system. Furthermore, this study serves as an excellent basis for future anatomical and/or physiological experiments.}, subject = {Gehirn}, language = {en} } @phdthesis{Kelber2009, author = {Kelber, Christina}, title = {The olfactory system of leafcutting ants: neuroanatomy and the correlation to social organization}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-47769}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {In leaf-cutting ants (genera Atta and Acromyrmex), the worker caste exhibits a pronounced size-polymorphism, and division of labor is largely dependent on worker size (alloethism). Behavioral studies have shown a rich diversity of olfactory-guided behaviors, and the olfactory system seems to be highly developed and very sensitive. To allow fine-tuned behavioral responses to different tasks, adaptations within the olfactory system of different sized workers are expected. In a recent study, two different phenotypes of the antennal lobe of Atta vollenweideri workers were found: MG- and RG-phenotype (with and without a macroglomerulus, MG). The existence of the macroglomerulus is correlated to the body size of workers, with small workers showing the RG-phenotype and large workers showing the MG-phenotype. In the MG, the information about the releaser component of the trail-pheromone is processed. In the first part of my PhD-project, I focus on quantifying behavioral differences between different sized workers in Atta vollenweideri. The study analyzes the trail following behavior; which can be generally performed by all workers. An artificial trail consisting of the releaser component of the trail-pheromone in decreasing concentration was used to test the trail-following performance of individual workers. The trail-following performance of the polymorphic workers is depended of the existence of the MG in the antennal lobe. Workers possessing the MG-phenotype were significantly better in following a decreasing trail then workers showing the RG-phenotype. In the second part I address the question if there are more structural differences, besides the MG, in the olfactory system of different sized workers. Therefore I analyze whether the glomerular numbers are related to worker size. The antennal lobes of small workers contain ~390 glomeruli (low-number; LN-phenotype), and in large workers I found a substantially higher number of ~440 glomeruli (high-number; HN-phenotype). All LN-phenotype workers and some of the small HN-phenotype workers do not possess an MG (LN-RG-phenotype and HN-RG-phenotype) at all, whereas the remaining majority of HN-phenotype workers do possess an MG (HN-MG-phenotype). Mass-stainings of antennal olfactory receptor neurons revealed that the sensory tracts divide the antennal lobe into six clusters of glomeruli (T1-T6). In the T4-cluster ~50 glomeruli are missing in the LN-phenotype workers. Selective staining of single sensilla and their associated receptor neurons showed that T4-glomeruli are innervated by receptor neurons from the main type of olfactory sensilla, the Sensilla trichodea curvata which are also projecting to glomeruli in all other clusters. The other type of olfactory sensilla, the Sensilla basiconica, exclusively innervates T6-glomeruli. Quantitative analyses revealed a correlation between the number of Sensilla basiconica and the volume of T6 glomeruli in different sized workers. The results of both behavioral and neuroanatomical studies in Atta vollenweideri suggest that developmental plasticity of antennal-lobe phenotypes promotes differences in olfactory-guided behavior which may underlie task specialization within ant colonies. The last part of my project focuses on the evolutionary origin of the macroglomerulus and the number of glomeruli in the antennal lobe. I compared the number, volumes and position of the glomeruli of the antennal lobe of 25 different species from all three major Attini groups (lower, higher and leaf-cutting Attini). The antennal lobes of all investigated Attini comprise a high number of glomeruli (257-630). The highest number was found in Apterostigma cf. mayri. This species is at a basal position within the Attini phylogeny, and a high number of glomeruli might have been advantageous in the evolution of the advanced olfactory systems of this Taxa. The macroglomerulus can be found in all investigated leaf-cutting Attini, but in none of the lower and higher Attini species. It is found only in large workers, and is located close to the entrance of the antennal nerve in all investigated species. The results indicate that the presence of a macroglomerulus in large workers of leaf-cutting Attini is a derived overexpression of a trait in the polymorphic leaf-cutting species. It presumably represents an olfactory adaptation to elaborate foraging and mass recruitment systems, and adds to the complexity of division of labor and social organization known for this group.}, subject = {Gehirn}, language = {en} } @phdthesis{Knapek2010, author = {Knapek, Stephan}, title = {Synapsin and Bruchpilot, two synaptic proteins underlying specific phases of olfactory aversive memory in Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-49726}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Memory is dynamic: shortly after acquisition it is susceptible to amnesic treatments, gets gradually consolidated, and becomes resistant to retrograde amnesia (McGaugh, 2000). Associative olfactory memory of the fruit fly Drosophila melanogaster also shows these features. After a single associative training where an odor is paired with electric shock (Quinn et al., 1974; Tully and Quinn, 1985), flies form an aversive odor memory that lasts for several hours, consisting of qualitatively different components. These components can be dissociated by mutations, their underlying neuronal circuitry and susceptibility to amnesic treatments (Dubnau and Tully, 1998; Isabel et al., 2004; Keene and Waddell, 2007; Masek and Heisenberg, 2008; Xia and Tully, 2007). A component that is susceptible to an amnesic treatment, i.e. anesthesia-sensitive memory (ASM), dominates early memory, but decays rapidly (Margulies et al., 2005; Quinn and Dudai, 1976). A consolidated anesthesia-resistant memory component (ARM) is built gradually within the following hours and lasts significantly longer (Margulies et al., 2005; Quinn and Dudai, 1976). I showed here that the establishment of ARM requires less intensity of shock reinforcement than ASM. ARM and ASM rely on different molecular and/or neuronal processes: ARM is selectively impaired in the radish mutant, whereas for example the amnesiac and rutabaga genes are specifically required for ASM (Dudai et al., 1988; Folkers et al., 1993; Isabel et al., 2004; Quinn and Dudai, 1976; Schwaerzel et al., 2007; Tully et al., 1994). The latter comprise the cAMP signaling pathway in the fly, with the PKA being its supposed major target (Levin et al., 1992). Here I showed that a synapsin null-mutant encoding the evolutionary conserved phosphoprotein Synapsin is selectively impaired in the labile ASM. Further experiments suggested Synapsin as a potential downstream effector of the cAMP/PKA cascade. Similar to my results, Synapsin plays a role for different learning tasks in vertebrates (Gitler et al., 2004; Silva et al., 1996). Also in Aplysia, PKA-dependent phosphorylation of Synapsin has been proposed to be involved in regulation of neurotransmitter release and short-term plasticity (Angers et al., 2002; Fiumara et al., 2004). Synapsin is associated with a reserve pool of vesicles at the presynapse and is required to maintain vesicle release specifically under sustained high frequency nerve stimulation (Akbergenova and Bykhovskaia, 2007; Li et al., 1995; Pieribone et al., 1995; Sun et al., 2006). In contrast, the requirement of Bruchpilot, which is homologous to the mammalian active zone proteins ELKS/CAST (Wagh et al., 2006), is most pronounced in immediate vesicle release (Kittel et al., 2006). Under repeated stimulation of a bruchpilot mutant motor neuron, immediate vesicle release is severely impaired whereas the following steady-state release is still possible (Kittel et al., 2006). In line with that, knockdown of the Bruchpilot protein causes impairment in clustering of Ca2+ channels to the active zones and a lack of electron-dense projections at presynaptic terminals (T-bars). Thus, less synaptic vesicles of the readily-releasable pool are accumulated to the release sites and their release probability is severely impaired (Kittel et al., 2006; Wagh et al., 2006). First, I showed that Bruchpilot is required for aversive olfactory memory and localized the requirement of Bruchpilot to the Kenyon cells of the mushroom body, the second-order olfactory interneurons in Drosophila. Furthermore, I demonstrated that Bruchpilot selectively functions for the consolidated anesthesia-resistant memory. Since Synapsin is specifically required for the labile anesthesia sensitive memory, different synaptic proteins can dissociate consolidated and labile components of olfactory memory and two different modes of neurotransmission (high- vs. low frequency dependent) might differentiate ASM and ARM.}, subject = {Taufliege}, language = {en} } @phdthesis{Aso2010, author = {Aso, Yoshinori}, title = {Dissecting the neuronal circuit for olfactory learning in Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-55483}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {This thesis consists of three major chapters, each of which has been separately published or under the process for publication. The first chapter is about anatomical characterization of the mushroom body of adult Drosophila melanogaster. The mushroom body is the center for olfactory learning and many other functions in the insect brains. The functions of the mushroom body have been studied by utilizing the GAL4/UAS gene expression system. The present study characterized the expression patterns of the commonly used GAL4 drivers for the mushroom body intrinsic neurons, Kenyon cells. Thereby, we revealed the numerical composition of the different types of Kenyon cells and found one subtype of the Kenyon cells that have not been described. The second and third chapters together demonstrate that the multiple types of dopaminergic neurons mediate the aversive reinforcement signals to the mushroom body. They induce the parallel memory traces that constitute the different temporal domains of the aversive odor memory. In prior to these chapters, "General introduction and discussion" section reviews and discuss about the current understanding of neuronal circuit for olfactory learning in Drosophila.}, subject = {Taufliege}, language = {en} } @phdthesis{Saumweber2011, author = {Saumweber, Timo}, title = {Mechanism of Learning and Plasticity in Larval Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-66354}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {According to a changing environment it is crucial for animals to make experience and learn about it. Sensing, integrating and learning to associate different kinds of modalities enables animals to expect future events and to adjust behavior in the way, expected as the most profitable. Complex processes as memory formation and storage make it necessary to investigate learning and memory on different levels. In this context Drosophila melanogaster represents a powerful model organism. As the adult brain of the fly is still quite complex, I chose the third instar larva as model - the more simple the system, the easier to isolate single, fundamental principles of learning. In this thesis I addressed several kinds of questions on different mechanism of olfactory associative and synaptic plasiticity in Drosophila larvae. I focused on short-term memory throughout my thesis. First, investigating larval learning on behavioral level, I developed a one-odor paradigm for olfactory associative conditioning. This enables to estimate the learnability of single odors, reduces the complexity of the task and simplify analyses of "learning mutants". It further allows to balance learnability of odors for generalization-type experiments to describe the olfactory "coding space". Furthermore I could show that innate attractiveness and learnability can be dissociated and found finally that paired presentation of a given odor with reward increase performance, whereas unpaired presentations of these two stimuli decrease performance, indicating that larva are able to learn about the presence as well as about the absence of a reward. Second, on behavioral level, together with Thomas Niewalda and colleagues we focussed on salt processing in the context of choice, feeding and learning. Salt is required in several physiological processes, but can neither be synthesized nor stored. Various salt concentrations shift the valence from attraction to repulsion in reflexive behaviour. Interestingly, the reinforcing effect of salt in learning is shifted by more than one order of magnitude toward higher concentrations. Thus, the input pathways for gustatory behavior appear to be more sensitive than the ones supporting gustatory reinforcement, which is may be due to the dissociation of the reflexive and the reinforcing signalling pathways of salt. Third, in cooperation with Michael Schleyer we performed a series of behavioral gustatory, olfactory preference tests and larval learning experiments. Based on the available neuroanatomical and behavioral data we propose a model regarding chemosensory processing, odor-tastant memory trace formation and the 'decision' like process. It incorporates putative sites of interaction between olfactory and gustatory pathways during the establishment as well as behavioral expression of odor-tastant memory. We claim that innate olfactory behavior is responsive in nature and suggest that associative conditioned behavior is not a simple substitution like process, but driven more likely by the expectation of its outcome. Fourth, together with Birgit Michels and colleagues we investigated the cellular site and molecular mode of Synapsin, an evolutionarily conserved, presynaptic vesicular phosphoprotein and its action in larval learning. We confirmed a previously described learning impairment upon loss of Synapsin. We localized this Synapsin dependent memory trace in the mushroom bodies, a third-order "cortical" brain region, and could further show on molecular level, that Synapsin is as a downstream element of the AC-cAMP-PKA signalling cascade. This study provides a comprehensive chain of explanation from the molecular level to an associative behavioral change. Fifth, in the main part of my thesis I focused on molecular level on another synaptic protein, the Synapse associated protein of 47kDa (Sap47) and its role in larval behavior. As a member of a phylogenetically conserved gene family of hitherto unknown function. It is localized throughout the whole neuropil of larval brains and associated with presynaptic vesicles. Upon loss of Sap47 larvae exhibit normal sensory detection of the to-be-associated stimuli as well as normal motor performance and basic synaptic transmission. Interestingly, short-term plasticity is distorted and odorant-tastant associative learning ability is reduced. This defect in associative function could be rescued by restoring Sap47 expression. Therefore, this report is the first to suggest a function for Sap47 and specifically argues that Sap47 is required for synaptic as well as for behavioral plasticity in Drosophila larva. This prompts the question whether its homologs are required for synaptic and behavioral plasticity also in other species. Further in the last part of my thesis I contributed to the study of Ayse Yarali. Her central topic was the role of the White protein in punishment and relief learning in adult flies. Whereas stimuli that precede shock during training are subsequently avoided as predictors for punishment, stimuli that follow shock during training are later on approached, as they predict relief. Concerning the loss of White we report that pain-relief learning as well as punishment learning is changed. My contribution was a comparison between wild type and the white1118 mutant larvae in odor-reward learning. It turned out that a loss of White has no effect on larval odorant-tastant learning. This study, regarding painrelief learning provides the very first hints concerning the genetic determinants of this form of learning.}, subject = {Taufliege}, language = {en} }