@phdthesis{Kusnezow2006, author = {Kusnezow, Wlad}, title = {Entwicklung von Antik{\"o}rper-Mikroarray : von Biophysik der Mikrospot-Reaktion bis zur Hochdurchsatzanalyse der Proteine}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-22534}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Obwohl Protein-Mikroarrays urspr{\"u}nglich aus dem gut entwickelten und fest etablierten DNA-Pendant entstanden sind, repr{\"a}sentierte jedoch die Umstellung der Mikroarray-Technik von der DNA- auf die Proteinanalyse aufgrund der enormen physikalisch-chemischen Variabilit{\"a}t der Proteine, deren relativ niedrigen Stabilit{\"a}t und der komplexen Mikrospot-Kinetik eine große technologische Herausforderung. Deshalb setzt das Vorhaben, die Technik der Antik{\"o}rper-Mikroarrays von ihrem konzeptuellen Zustand ausgehend zu einem robusten, real funktionierenden Werkzeug zu etablieren, nicht nur eine Vielzahl an technologischen L{\"o}sungen, sondern auch eine systematische und physikalisch begr{\"u}ndete Herangehensweise in dieser technologischen Entwicklung voraus. Das waren im Wesentlichen die zwei wichtigsten, der eigentlichen Entwicklung der Antik{\"o}rper-Mikroarrays untergeordneten Ziele der Arbeit. Mit dem Ziel, Antik{\"o}rper-Mikroarrays prinzipiell zu etablieren und eine optimale Immobilisierungschemie f{\"u}r deren Herstellung zu finden, wurden im ersten Teil dieser Arbeit mehrere chemische Beschichtungen von Glasslides optimiert, unterschiedliche Spotting-Bedingungen von Antik{\"o}rpern f{\"u}r verschiedene Oberfl{\"a}chen getestet und verschiedene Blockierungsverfahren und Strategien zur Aufbewahrung von Slides analysiert. Anschließend wurde eine Reihe von kommerziellen und selbst hergestellten chemisch beschichteten Slides unter den optimierten Bedingungen miteinander verglichen. Als Hauptergebnis dieser Untersuchung wurde die Herstellung der Antik{\"o}rper-Microarrays etabliert. Unter anderem konnte im Zuge dieser systematischen Analyse gezeigt werden, dass Epoxysilan-modifizierte Oberfl{\"a}chen am besten geeignet sind. Diese Oberfl{\"a}che ist heutzutage auf dem Gebiet der Protein-Microarrays am weitesten verbreitet und wurde f{\"u}r alle weiteren Studien innerhalb dieser Dissertation verwendet. Die Entwicklung der Antik{\"o}rper-Mikroarrays in den letzten Jahren demonstrierte erhebliche Schwierigkeiten im Erreichen der n{\"o}tigen Sensitivit{\"a}t und Reproduzierbarkeit. Um dieser Problematik auf den Grund zu gehen, und die Mikrospot-Kinetik experimentell untersuchen zu k{\"o}nnen, wurde im Rahmen dieser Arbeit eine modifizierte und f{\"u}r den Fall der Mikrorrays angepasste Variante des Two-Compartment Modells (TCM) entwickelt. TCM erm{\"o}glicht auf eine ph{\"a}nomenologische Weise, d.h., dass Diffusionskoeffizienten, Mischintensit{\"a}t oder Dichte der Bindungsstellen nicht bekannt sein m{\"u}ssen, eine quantitative experimentelle Analyse der Mikrospot-Kinetik unter Ber{\"u}cksichtigung von Effekten des Massentransports. Um die ph{\"a}nomenologischen TCM-Werte interpretieren zu k{\"o}nnen und um den Mechanismus der Mikrospot-Reaktion zu untersuchen, wurden auch andere, f{\"u}r die Mikrospot-Kinetik relevante, klassische Theorien an die Bedingungen der Mikrospot-Reaktion angepasst und mit dem modifizierten TCM mathematisch verbunden. Als das erste in der Mikroarray-Technologie mathematisch-physikalische Werkzeug dieser Art hat die hier entwickelte Theorie ein großes Potential, auch in den anderen verwandten Techniken wie DNA- oder Peptid-Mikroarrays Verwendung zu finden. Außerdem wurde innerhalb dieser Arbeit ein anderes einheitliches theoretisches Modell entwickelt, das eine kinetische Simulation von verschiedenen Reaktionsphasen sowohl f{\"u}r konventionelle als auch f{\"u}r Mikrospot-Immunoassays erm{\"o}glicht. Im Rahmen dieser Arbeit konnte f{\"u}r einen typischen Standard-Antik{\"o}rper-Mikroarray theoretisch und experimentell eine lang andauernde, stark massentransportabh{\"a}ngige Mikrospot-Kinetik beschrieben werden. Es konnte gezeigt werden, dass das Erreichen eines thermodynamischen Gleichgewichts in Mikroarrays wegen eines relativ langsamen Ligandentransports zum Spot eine lange Zeit dauert, je nach Bindungskonstante, Diffusionsgeschwindigkeit und Ligandenkonzentration mehrere Stunden bis hin zu Wochen. In dieser Arbeit wurde ein neues physikalisches Konzept, das dem heutzutage dominierenden Blickwinkel, der sogenannten ambient analyte Theorie, opponierend gegen{\"u}bersteht, formuliert. Auch konnten viele Konsequenzen f{\"u}rs Design und die zuk{\"u}nftige Entwicklung dieser relativ neuen Technologie gezogen werden. Als eine logische Folge der massentransportlimitierten Reaktionen ist das Design eines Antik{\"o}rper-Mikroarray ein kritischer Punkt f{\"u}r die Leistung des Verfahrens. Im Laufe der experimentellen und/oder theoretischen Betrachtungen konnte gezeigt werden, dass eine Reihe allgemeiner Parameter wie Gr{\"o}ße eines Spots, Spotting-Muster, Inkubationsgeometrie, Volumen und Konzentration einer Probe, Viskosit{\"a}t des Inkubationspuffers und Mischintensit{\"a}t die Reaktionsraten auf den Spots insgesamt um mehrere Gr{\"o}ßenordnungen beeinflusst. Ist die maximale Rate des Massentransports in einem Mikroarray-Verfahren gew{\"a}hrleistet, kann dann auch die maximale Bindungsleistung der Spots, die durch die Dichte der Bindungsstellen, Bindungsaffinit{\"a}t, Inkubationszeit und andere relevante Parameter eingestellt wird, erreicht werden. Aber nicht nur in der Inkubationsphase, sondern auch bei den Wasch- und Detektionsschritten sollte die gleiche Liste der Parameter ber{\"u}cksichtigt werden. Durch die Optimierung all dieser Parametern konnte eine deutliche Verbesserung der Sensitivit{\"a}t von Antik{\"o}rper-Mikroarrays in der Protein-Expressionsanalyse von klinischen Blutproben erzielt werden In einer weiteren Studie zur Analyse von unterschiedlichen Detektionsverfahren konnte die Sensitivit{\"a}t und Reproduzierbarkeit der etablierten Antik{\"o}rper-Mikroarrays weiter verbessert werden. Eine Reihe unterschiedlicher Markierungssubstanzen mit NHS (N-hydroxysuccinimide) und ULS (universal linkage system) reaktiven Gruppen wurden innerhalb drei Detektionsverfahren untersucht: 1) eine direkte Probenmarkierung mit Fluoreszenzfarbstoffen, 2) Markierung der Probe mit Biotin-Substanzen und nachfolgender Detektion mittels fluoreszenzmarkierten Extravidin und 3) Markierung der Probe mit Fluorescein-Substanzen mit Anti-Fluorescein-Detektion. Aus den Erfahrungen der vorherigen kinetischen Untersuchungen wurde hier vorerst das kinetische Verhalten des Testsystems analysiert und optimale Inkubationsbedingungen festgelegt. Anschließend wurden optimale Konzentrationen all dieser Substanzen f{\"u}r die Markierung von Blutplasma bestimmt. Im Vergleich zur direkten Fluoreszenzmarkierung resultierten sich die indirekten Detektionsverfahren mit Biotin- und Fluorescein-Substanzen in wesentlich besseren Signal-zu-Hintergrund-Verh{\"a}ltnissen. In einer anschließenden Vergleichsanalyse zeigten sich einige Substanzen wie Biotin-ULS oder Fluoresceine-NHS als am besten geeignet f{\"u}r eine Protein-Expressionsanalyse von Blutplasma. Sensitivit{\"a}ten im femtomolaren Bereich konnten mittels der etablierten Antik{\"o}rper-Mikroarrays sowohl f{\"u}r eine markierte Antigenmischung als auch f{\"u}r komplexe klinische Proben innerhalb dieser Dissertation erzielt werden. Viele niedrig konzentrierte Proteine wie beispielsweise Zytokine, die normalerweise in einer piko-oder femtomolaren Konzentration im Blut vorliegen, wurden in dieser Arbeit mit sehr hohen Signal-zu-Hintergrund-Verh{\"a}ltnissen detektiert. Das hier beschriebene Verfahren {\"o}ffnet zus{\"a}tzliche M{\"o}glichkeiten f{\"u}r schnelle, kosteng{\"u}nstige und unbeschr{\"a}nkt erweiterungsf{\"a}hige Mikrospot-Immunoassays.}, subject = {Microarray}, language = {de} }