@phdthesis{Berghoff2002, author = {Berghoff, Stefanie M.}, title = {Sociobiology of the hypogaeic army ant Dorylus (Dichthadia) laevigatus Fr. Smith}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-5005}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Originally renowned for their spectacular epigaeic raids, army ants have captured scientific attention for almost two centuries. They now belong to one of the best studied group of ants. However, most of our knowledge about army ants was derived from the study of the minority of specialized, epigaeicly active species. These species evolved probably rather recently from hypogaeic ancestors. The majority of army ant species still leads a hypogaeic life and is almost completely unknown in its entire sociobiology. It thus remained speculative, whether the assumed 'general' characteristics of army ants represent an adaptation to epigaeic activity or apply also to the majority of hypogaeic species. Based on the recent observation that the hypogaeic Asian army ant Dorylus (Dichthadia) laevigatus recruits predictably to palm oil baits, I developed and tested an oil-baiting method for the study of hypogaeic (army)ants. Prior to my study, nothing was known about the sociobiology of the assumed rare D. laevigatus. Throughout my work, I showed D. laevigatus to be very common and abundant in a wide range of habitats in West-Malaysia and on Borneo. Investigating its foraging behavior, I revealed D. laevigatus to differ from epigaeicly active species in several ways. Never demonstrated for any of the epigaeic species, D. laevigatus established stable trunk trail systems. Such a trail system contradicted the perception of army ant foraging, which was believed to be characterized by raids with constantly alternating trail directions. The trunk trail system further enabled a near omnipresence of D. laevigatus within its foraging area, which was also believed to be atypical for an army ant. Raids differed in structure and composition of participating workers from those of epigaeic species. Also, bulky food sources could be exploited over long periods of time. The foraging system of D. laevigatus resembled in several ways that of e.g. leaf-cutter and harvester ants. Likewise contrary to the assumptions, D. laevigatus had a wide food spectrum and showed only little effect on local arthropod communities, even falling itself prey to other ants. Strong aggressive behavior was observed only towards ant species with similar lifestyles, enabling me to provide the first detailed documentation of interspecific fights between two sympatric Dorylus species. Similar to foraging habits or ecological impact, nothing was known about colony size and composition, nesting habits, or worker polymorphism for D. laevigatus or any other hypogaeic Dorylus species prior to my work. By observing and eventually excavating a colony, I showed D. laevigatus to have a much smaller colony size and to lack the large sized workers of epigaeic Dorylus species. Similar to epigaeic Dorylinae, I showed D. laevigatus to have a non-phasic brood production, to emigrate rarely, and to alter its nest form along with habitat conditions. Detailed morphological and geographical descriptions give an impression of the Asian Dorylus species and are expected to aid other researchers in the difficult species identification. The genetic analysis of a male collected at a light trap demonstrated its relation to D. laevigatus. Confirming the male and queen associations, D. laevigatus is now one of five Dorylus species (out of a total of 61), for which all castes are known. In cooperation with D. Kistner, I provide a morphological and taxonomical description of nine Coleopteran beetles associated with D. laevigatus. Behavioral observations indicated the degree of their integration into the colony. The taxonomic position of the beetles further indicated that D. laevigatus emigrated from Africa to Asia, and was accompanied by the majority of associated beetles. The diversity of D. laevigatus guests, which included a number of unidentified mites, was rather low compared to that of epigaeic species. Overall, I demonstrated the developed baiting containers to effectively enable the study of hypogaeic ants. I showed several other hypogaeic ant species to be undersampled by other methods. Furthermore, the method enabled me to documented a second hypogaeic Dorylus species on Borneo. A detailed description of this species' morphology, ecology, and interactions with D. laevigatus is provided. My study indicated D. laevigatus to be an ecologically important species, able to influence soil structure and organisms of tropical regions in many ways. Relating the observed traits of D. laevigatus to epigaeicly active species, I conclude that our assumption of 'general' army ant behavior is erroneous in several aspects and needs to be changed. The oil-baiting method finally provides a tool enabling the location and study of hypogaeic (army)ant species. This opens a broad field for future studies on this cryptic but nonetheless important group of ants.}, subject = {Borneo}, language = {en} } @phdthesis{Roeschard2002, author = {R{\"o}schard, Jacqueline}, title = {Cutter, carriers and bucket brigades ...}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-2240}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {This study investigates the foraging behaviour of grass-cutting ants, Atta vollenweideri, with specific consideration of the following issues: (a) cutting behaviour and the determination of fragment size, (b) the effect of load size on transport economics, (c) division of labour and task-partitioning. Grass-cutting ants, Atta vollenweideri, harvest grass fragments that serve as substrate for the cultivation of a symbiotic fungus. Foragers were observed to cut grass fragments across the blade, thus resulting in longish, rectangular-shaped fragments in contrast to the semicircular fragments of leaf-cutting ants. Cutting was very time-consuming: In tough grasses like the typical grassland species Paspallum intermedium and Cyperus entrerrianus, cutting times lasted up to more than 20 minutes per fragment and roughly half of all initiated cutting attempts were given up by the ants. Foragers harvesting the softer grass Leersia hexandra were smaller than those foraging on the hard grasses. Fragment size determination and the extent of size-matching between ant body size and fragment size was investigated regarding possible effects of tissue toughness on decision-making and as a function of the distance from the nest. Tissue toughness affected decision-making such that fragment width correlated with ant body mass for the hard grass but not for the soft one, suggesting that when cutting is difficult, larger ants tend to select wider grasses to initiate cutting. The length of the fragments cut out of the two grass species differed statistically, but showed a large overlap in their distribution. Distance from the nest affected load size as well as the extent of size-matching: Fragments collected directly after cutting were significantly larger than those carried on the trail. This indicates that fragments were cut once again on their way to the nest. Size-matching depended on the trail sector considered, and was stronger in ants sampled closer to the nest, suggesting that carriers either cut fragments in sizes corresponding to their body mass prior transport, or transferred them to nestmates of different size after a short carrying distance. During transport, a worker takes a fragment with its mandibles at one end and carries it in a more or less vertical position. Thus, load length might particularly affect maneuverability, because of the marked displacement of the gravitational center. Conversely, based on the energetic of cutting, workers might maximise their individual harvesting rate by cutting long grass fragments, since the longer a grass fragment, the larger is the amount of material harvested per unit cutting effort. I therefore investigated the economics of load transport by focusing on the effects of load size (mass and length) on gross material transport rate to the nest. When controlling for fragment mass, both running speed of foragers and gross material transport rate was observed to be higher for short fragments. In contrast, if fragment mass was doubled and length maintained, running speed differed according to the mass of the loads, with the heavier fragments being transported at the lower pace. For the sizes tested, heavy fragments yielded a higher transport rate in spite of the lower speed of transport, as they did not slow down foragers so much that it counterbalanced the positive effects of fragment mass on material transport rate. The sizes of the fragments cut by grass-cutting ants under natural conditions therefore may represent the outcome of an evolutionary trade-off between maximising harvesting rate at the cutting site and minimising the effects of fragment size on material transport rates. I investigated division of labour and task partitioning during foraging by recording the behaviour of marked ants while cutting, and by monitoring the transport of fragments from the cutting until they reached the nest. A. vollenweideri foragers showed division of labour between cutting and carrying, with larger workers cutting the fragments, and smaller ones transporting them. This division was absent for food sources very close to the nest, when no physical trail was present. Along the trail, the transport of fragment was a partitioned task, i.e., workers formed bucket brigades composed of 2 to 5 carriers. This sequential load transport occurred more often on long than on short trails. The first carriers of a bucket brigade covered only short distances before dropping their fragments, turned back and continued foraging at the same food source. The last carriers covered the longest distance. There was no particular location on the trail for load dropping , i.e., fragments were not cached. I tested the predictions of two hypotheses about the causes of bucket brigades: First, bucket brigades might occur because of load-carriage effects: A load that is too big for an ant to be carried is dropped and carried further by nestmates. Second, fragments carried by bucket brigades might reach the nest quicker than if they are transported by a single carrier. Third, bucket brigades might enhance information flow among foragers: By transferring the load a worker may return earlier back to the foraging site and be able to reinforce the chemical trail, thus recruitment. In addition, the dropped fragment itself may contain information for unladen foragers about currently harvested sources and may enable them to choose between sources of different quality. I investigated load-carriage effects and possible time-saving by presenting ants with fragments of different but defined sizes. Load size did not affect frequency of load dropping nor the distance the first carrier covered before dropping, and transport time by bucket brigades was significantly longer than by single carriers. In order to study the information transfer hypothesis, I presented ants with fragments of different attractivity but constant size. Ants carrying high-quality fragments would be expected to drop them more often than workers transporting low-quality fragments, thus increasing the frequency of bucket brigades. My results show that increasing load quality increased the frequency of bucket brigades as well as it decreased the carrying distance of the first carrier. In other words, more attractive loads were dropped more frequently and after a shorter distance than less attractive ones with the first carriers returning to the foraging site to continue foraging. Summing up, neither load-carriage effects nor time-saving caused the occurrence of bucket brigades. Rather, the benefit might be found at colony level in an enhanced information flow.}, subject = {Atta}, language = {en} } @phdthesis{Schwaerzel2003, author = {Schw{\"a}rzel, Martin}, title = {Localizing engrams of olfactory memories in Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-5065}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Zars and co-workers were able to localize an engram of aversive olfactory memory to the mushroom bodies of Drosophila (Zars et al., 2000). In this thesis, I followed up on this finding in two ways. Inspired by Zars et al. (2000), I first focused on the whether it would also be possible to localize memory extinction.While memory extinction is well established behaviorally, little is known about the underlying circuitry and molecular mechanisms. In extension to the findings by Zars et al (2000), I show that aversive olfactory memories remain localized to a subset of mushroom body Kenyon cells for up to 3 hours. Extinction localizes to the same set of Kenyon cells. This common localization suggests a model in which unreinforced presentations of a previously learned odorant intracellularly antagonizes the signaling cascades underlying memory formation. The second part also targets memory localization, but addresses appetitive memory. I show that memories for the same olfactory cue can be established through either sugar or electric shock reinforcement. Importantly, these memories localize to the same set of neurons within the mushroom body. Thus, the question becomes apparent how the same signal can be associated with different events. It is shown that two different monoamines are specificaly necessary for formation of either of these memories, dopamine in case of electric shock and octopamine in case of sugar memory, respectively. Taking the representation of the olfactory cue within the mushroom bodies into account, the data suggest that the two memory traces are located in the same Kenyon cells, but in separate subcellular domains, one modulated by dopamine, the other by octopamine. Taken together, this study takes two further steps in the search for the engram. (1) The result that in Drosophila olfactory learning several memories are organized within the same set of Kenyon cells is in contrast to the pessimism expressed by Lashley that is might not be possible to localize an engram. (2) Beyond localization, a possibible mechanism how several engrams about the same stimulus can be localized within the same neurons might be suggested by the models of subcellular organisation, as postulated in case of appetitive and aversive memory on the one hand and acquisition and extinction of aversive memory on the other hand.}, subject = {Taufliege}, language = {en} } @phdthesis{Pick2004, author = {Pick, Simon}, title = {Kinematik und visuelle Steuerung des Kletterverhaltens und der Beinplatzierung der Fliege Drosophila melanogaster und {\"U}bertragung auf die Robotik}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-12737}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Im Rahmen dieser Arbeit wurden visuelle Einfl{\"u}sse auf die Beinplatzierung beim Laufen und auf das Kletterverhalten der Fliege Drosophila melanogaster analysiert. W{\"a}hrend sich die Beinplatzierung als vorwiegend taktil gesteuert herausstellte, ist das Klettern sowohl bez{\"u}glich der Entscheidung zur Durchf{\"u}hrung (Motivationssteuerung) als auch bez{\"u}glich der Ausf{\"u}hrung selbst unter pr{\"a}ziser visueller Kontrolle. F{\"u}r die Untersuchungen wurde ein L{\"u}cken-{\"U}berwindungsparadigma entwickelt und die Kinematik des Kletterns {\"u}ber verschieden breite L{\"u}cken mit einer eigens entwickelten 3D-Hochgeschwindigkeits-Videoanlage erstmals quantitativ beschrieben. Drei wesentliche Verhaltensanpassungen sorgen daf{\"u}r, dass die Fliegen die maximal m{\"o}gliche Spannbreite ihrer Beine voll ausn{\"u}tzen und L{\"u}cken von bis zu 170\% der eigenen K{\"o}rperl{\"a}nge {\"u}berqueren k{\"o}nnen. Das Kletterverhalten wird abh{\"a}ngig von der L{\"u}ckenbreite initiiert und sinnlose Versuche an un{\"u}berwindbar breiten L{\"u}cken vermieden. Die visuelle L{\"u}ckenbreitenmessung wurde analysiert; sie beruht auf der Auswertung von Bewegungsparallaxe beim Anlauf. Einige Erkenntnisse aus der Laufforschung an Fliegen wurden auf einem im Rahmen dieser Arbeit modifizierten hexapoden Laufroboter umgesetzt und die Verbesserungen quantifiziert.}, subject = {Taufliege}, language = {de} } @phdthesis{Bock2005, author = {Bock, Fiola}, title = {Untersuchungen zu nat{\"u}rlicher und manipulierter Aufzucht von Apis mellifera : Morphologie, Kognition und Verhalten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-17801}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {3. Zusammenfassung Ein noch immer unvollst{\"a}ndig verstandenes Problem sind die exakten Mechanismen der Arbeitsteilung und Koordination innerhalb von Bienenv{\"o}lkern Apis mellifera. Auf der einen Seite muss die sensorische und neuronale Ausstattung jedes Individuums das Potential zur Kommunikation und Aufgabenbew{\"a}ltigung enthalten, zum anderen m{\"u}ssen jedem Bienenvolk Mechanismen zur Steuerung zur Verf{\"u}gung stehen, die auch so weit in die Zukunft reichenden Notwendigkeiten wie Wintervorbereitungen zuverl{\"a}ssig durchf{\"u}hren. Die vorliegende Arbeit beleuchtet daraus ausgew{\"a}hlte Aspekte. Zum einen werden Aspekte der kognitiven F{\"a}higkeiten der Einzelbienen untersucht, die im Hinblick auf ihre Rolle als sammelnde Arbeiterinnen eine wichtige Rolle spielen. Das Erkennen und Verarbeiten von Mustern spielt eine wichtige Rolle beim Auffinden von potentiellen Nahrungsquellen. Hier konnte mittels des DMTS - Paradigma ein hoher Abstraktionsgrad der Musterverarbeitung sowie eine Speicherung auch komplexer Muster gezeigt werden. Zum anderen wird die Bruttemperatur als ein Einfluss auf die Puppenentwicklung und dessen m{\"o}gliche Folgen auf kognitive F{\"a}higkeiten und Lebenshistorie untersucht. Variation der Bruttemperatur wurde in verschiedenen Zusammenh{\"a}ngen als starker Einfluss auf unterschiedliche Aspekte der Entwicklung gezeigt. In der vorliegenden Arbeit kann diese Bruttemperatur als m{\"o}glicher Faktor der nachfolgend unterschiedlichen Auspr{\"a}gung von Verhaltensmustern gezeigt werden. Dabei wird ebenso auf die Unterschiede im Verhaltensmuster von t{\"a}glichen Stockt{\"a}tigkeiten wie auf die resultierenden Unterschiede in der Lebensgeschichte und -spanne eingegangen, die aus unterschiedlichen Brutaufzuchtstemperaturen resultieren k{\"o}nnen. Als Aufzuchtstemperaturen werden dabei 32°C, 35°C sowie 36°C verwendet, um eine Vari ation zwischen der an anderer Stelle berichteten mittleren, der niedrigsten und der h{\"o}chsten Temperatur f{\"u}r morphologisch vollst{\"a}ndig entwickelte Bienen zu erreichen und die daraus resultierenden Arbeiterinnen zu untersuchen. Sowohl die Ergebnisse der Verhaltensuntersuchungen von Stockbienen wie auch der Vergleich von Lebensaktivit{\"a}t und -spanne zeigen dabei signifikante Unterschiede zwischen den bei unterschiedlichen Temperaturen aufgezogenen Arbeiterinnen in deren analysiertem Verhalten.}, subject = {Biene}, language = {de} } @article{HeisswolfGablerObermaieretal.2007, author = {Heisswolf, Annette and Gabler, Dirk and Obermaier, Elisabeth and M{\"u}ller, Caroline}, title = {Olfactory versus contact cues in host plant recognition of a monophagous chrysomelid beetle}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-49475}, year = {2007}, abstract = {The importance of olfactory versus contact cues for host plant recognition was investigated in the tortoise beetle Cassida canaliculata Laich. (Coleoptera: Chrysomelidae), which is strictly monophagous on meadow sage. The reaction of adult beetles to olfactory and contact host cues was tested using three bioassays (locomotion compensator, six-chamber-olfactometer, stem arena') to account for different behavioral contexts. Bioassay-guided fractionation of plant extracts was elaborated to characterize the nature of contact stimuli. The beetles were only slightly attracted to odors from small amounts of leaf material. However, when contact cues were provided additionally, the beetles showed strong preferences for samples of their host plant over controls. Bioassay-guided fractionation led to isolation of at least two non-polar contact stimuli acting in concert that are sufficient for host plant identification in C. canaliculata.}, subject = {Insekt}, language = {en} } @phdthesis{Kleinhenz2008, author = {Kleinhenz, Marco}, title = {W{\"a}rme{\"u}bertragung im Brutbereich der Honigbiene (Apis mellifera)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-26866}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {In dieser Arbeit untersuche ich das Verhalten von Arbeiterbienen beim Brutw{\"a}rmen, die W{\"a}rme{\"u}bertragung von den Bienen auf die gedeckelte Brut, die thermophysikalischen Eigenschaften des Brutnests und spezielle Aspekte des Brutnestaufbaus, die f{\"u}r dieses Thema relevant sind und bisher nicht untersucht wurden. Meine Arbeit umfasst Verhaltensbeobachtungen und thermografische Messungen an individuellen Bienen, die Simulation des Heizverhaltens von Arbeiterinnen und das Messen der Temperatur{\"a}nderungen in der Wabe, die Messung der thermophysikalischen Eigenschaften der Brutwabe und der Zellw{\"a}nde (W{\"a}rmeleitf{\"a}higkeit und Durchl{\"a}ssigkeit f{\"u}r W{\"a}rmestrahlung), die Auswertung von Brutzelltemperaturen als Ergebnis des Verhaltens von Arbeiterbienen, die Analyse der Anzahl und der r{\"a}umlichen Verteilung von Brutl{\"u}cken (Auswertung in 2-D und 3-D bez{\"u}glich beider Wabenseiten) und die Entwicklung spezifischer Computersoftware, die zur Erarbeitung dieser Ergebnisse unverzichtbar ist. Ein wichtiges Ergebnis dieser Arbeit ist die Entdeckung und Beschreibung eines bemerkenswerten, bislang unbekannten Verhaltens der Honigbiene: Die Aufrechterhaltung hoher Thoraxtemperaturen (TTh) bei Langzeitbesuchen in offenen Zellen („L{\"u}cken") die verstreut in der gedeckelten Brutfl{\"a}che vorkommen. Hier zeige ich, dass die Aufrechterhaltung der hohen TTh nicht auf den Zellinhalt (z. B. offene Brut) bezogen ist - in den meisten F{\"a}llen waren die besuchten Zellen ohnehin leer - sondern auf die direkt benachbarte gedeckelte Brut, mit der diese Zellen {\"u}ber gemeinsame Zellw{\"a}nde in Kontakt stehen. Dieses Verhalten liefert eine Erkl{\"a}rung f{\"u}r Langzeitzellbesuche von sehr langer Dauer ohne erkennbare Aktivit{\"a}t, die in fr{\"u}heren Arbeiten beschrieben aber nicht v{\"o}llig verstanden wurden, und es rehabilitiert die scheinbar „faulen" Bienen im Zellinnern. Diesem Verhalten kommt eine große Bedeutung f{\"u}r das Brutw{\"a}rmen zu, da sich der aufgeheizte Thorax tief in der Wabe (fast an der Mittelwand) befindet wo der W{\"a}rmeverlust an die Luft minimiert ist und von wo bis zu 6 umliegende Puppenzellen gleichzeitig gew{\"a}rmt werden k{\"o}nnen. Im Vergleich zum Brutw{\"a}rmeverhalten an der Wabenoberfl{\"a}che (Andr{\"u}cken des Thorax an die Brutdeckel), wo nur 1 oder Teile von 3 Brutdeckeln mit dem Thorax in Ber{\"u}hrung stehen, ist das W{\"a}rmen im Zellinnern mit derselben TTh bis zu 2,6-fach effizienter. Die Messung der thermophysikalischen Eigenschaften der Brutwabe und die Simulation des Brutw{\"a}rmeverhaltens unter kontrollierten Bedingungen zeigen, dass sich die Wabe langsam aufw{\"a}rmt und eher ein lokal begrenztes W{\"a}rmen als eine rasche W{\"a}rmeausbreitung {\"u}ber eine große Fl{\"a}che beg{\"u}nstigt. Der Einflussbereich eines einzelnen Zellbesuchers h{\"a}ngt von seiner TTh und der Dauer des Zellbesuchs ab. Anstiege der Bruttemperatur in bis zu 3 Zellen Abstand zum Zellbesucher sind nachweisbar. Das hier beschriebene Brutw{\"a}rmeverhalten im Innern von L{\"u}cken (offenen Zellen) bietet nicht nur neue Einsichten in das Bienenverhalten. Es erm{\"o}glicht auch eine Neubewertung der L{\"u}cken und ihrer N{\"u}tzlichkeit f{\"u}r die Bienen. Eine von mir entwickelte Computersoftware („CombUse 2.0") erm{\"o}glicht es, das Vorkommen und die r{\"a}umliche Verteilung von L{\"u}cken mit hoher Genauigkeit auf der Ebene einzelner Zellen zu erfassen und auszuwerten. Die r{\"a}umliche Verteilung der L{\"u}cken in der gedeckelten Brutfl{\"a}che zeigt, dass schon bei geringen L{\"u}ckenh{\"a}ufigkeiten von ca. 4 bis 10 \%, die in gesunden Kolonien normal sind, eine {\"u}berraschend große Zahl gedeckelter Brutzellen (88 \% bis 99 \%, wenn die dreidimensionale Verteilung ber{\"u}cksichtigt wird) im Einflussbereich von Brut w{\"a}rmenden Zellbesuchern sind. Obwohl das Brutw{\"a}rmeverhalten im Zellinnern schwer zu entdecken und zu beobachten ist, f{\"u}hren die in dieser Arbeit pr{\"a}sentierten Daten zu dem Schluss, dass es sich dabei um einen wichtigen Bestandteil der Nestklimatisierung bei Honigbienen handelt.}, subject = {Biene }, language = {de} } @phdthesis{Brandstaetter2010, author = {Brandstaetter, Andreas Simon}, title = {Neuronal correlates of nestmate recognition in the carpenter ant, Camponotus floridanus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-55963}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Cooperation is beneficial for social groups and is exemplified in its most sophisticated form in social insects. In particular, eusocial Hymenoptera, like ants and honey bees, exhibit a level of cooperation only rarely matched by other animals. To assure effective defense of group members, foes need to be recognized reliably. Ants use low-volatile, colony-specific profiles of cuticular hydrocarbons (colony odor) to discriminate colony members (nestmates) from foreign workers (non-nestmates). For colony recognition, it is assumed that multi-component colony odors are compared to a neuronal template, located in a so far unidentified part of the nervous system, where a mismatch results in aggression. Alternatively, a sensory filter in the periphery of the nervous system has been suggested to act as a template, causing specific anosmia to nestmate colony odor due to sensory adaptation and effectively blocking perception of nestmates. Colony odors are not stable, but change over time due to environmental influences. To adjust for this, the recognition system has to be constantly updated (template reformation). In this thesis, I provide evidence that template reformation can be induced artificially, by modifying the sensory experience of carpenter ants (Camponotus floridanus; Chapter 1). The results of the experiments showed that template reformation is a relatively slow process taking several hours and this contradicts the adaptation-based sensory filter hypothesis. This finding is supported by first in-vivo measurements describing the neuronal processes underlying template reformation (Chapter 5). Neurophysiological measurements were impeded at the beginning of this study by the lack of adequate technical means to present colony odors. In a behavioral assay, I showed that tactile interaction is not necessary for colony recognition, although colony odors are of very low volatility (Chapter 2). I developed a novel stimulation technique (dummy-delivered stimulation) and tested its suitability for neurophysiological experiments (Chapter 3). My experiments showed that dummy-delivered stimulation is especially advantageous for presentation of low-volatile odors. Colony odor concentration in headspace was further increased by moderately heating the dummies, and this allowed me to measure neuronal correlates of colony odors in the peripheral and the central nervous system using electroantennography and calcium imaging, respectively (Chapter 4). Nestmate and non-nestmate colony odor elicited strong neuronal responses in olfactory receptor neurons of the antenna and in the functional units of the first olfactory neuropile of the ant brain, the glomeruli of the antennal lobe (AL). My results show that ants are not anosmic to nestmate colony odor and this clearly invalidates the previously suggested sensory filter hypothesis. Advanced two-photon microscopy allowed me to investigate the neuronal representation of colony odors in different neuroanatomical compartments of the AL (Chapter 5). Although neuronal activity was distributed inhomogeneously, I did not find exclusive representation restricted to a single AL compartment. This result indicates that information about colony odors is processed in parallel, using the computational power of the whole AL network. In the AL, the patterns of glomerular activity (spatial activity patterns) were variable, even in response to repeated stimulation with the same colony odor (Chapter 4\&5). This finding is surprising, as earlier studies indicated that spatial activity patterns in the AL reflect how an odor is perceived by an animal (odor quality). Under natural conditions, multi-component odors constitute varying and fluctuating stimuli, and most probably animals are generally faced with the problem that these elicit variable neuronal responses. Two-photon microscopy revealed that variability was higher in response to nestmate than to non-nestmate colony odor (Chapter 5), possibly reflecting plasticity of the AL network, which allows template reformation. Due to their high variability, spatial activity patterns in response to different colony odors were not sufficiently distinct to allow attribution of odor qualities like 'friend' or 'foe'. This finding challenges our current notion of how odor quality of complex, multi-component odors is coded. Additional neuronal parameters, e.g. precise timing of neuronal activity, are most likely necessary to allow discrimination. The lower variability of activity patterns elicited by non-nestmate compared to nestmate colony odor might facilitate recognition of non-nestmates at the next level of the olfactory pathway. My research efforts made the colony recognition system accessible for direct neurophysiological investigations. My results show that ants can perceive their own nestmates. The neuronal representation of colony odors is distributed across AL compartments, indicating parallel processing. Surprisingly, the spatial activity patterns in response to colony are highly variable, raising the question how odor quality is coded in this system. The experimental advance presented in this thesis will be useful to gain further insights into how social insects discriminate friends and foes. Furthermore, my work will be beneficial for the research field of insect olfaction as colony recognition in social insects is an excellent model system to study the coding of odor quality and long-term memory mechanisms underlying recognition of complex, multi-component odors.}, subject = {Neuroethologie}, language = {en} } @phdthesis{Schneider2011, author = {Schneider, Christof}, title = {Detecting the influence of different potential stress factors on the behavior of the honeybee Apis mellifera using Radiofrequency Identification (RFID)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71344}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {This study was conducted to determine the influence of different stress factors on the honeybee Apis mellifera. The investigation was motivated by previous experiments that suggested the existence of an unspecific defense mechanism causing a generalized change of flight behavior after the onset of different diseases. This mechanism is thought to impede the ability of flight bees to return to their respective colonies thereby removing the disease from the colony over time. During the last years, the existence of such a "suicidal behavior" was supported by further studies. Thus, an unnoticed, potentially highly effective defense mechanism of social insects was revealed whose spectrum of activity and physiological basics require further investigation. Suggesting that the reaction by the bees is unspecific to different diseases as well as to other potential stress factors, this study was designed to investigate the influence of pathogens, insecticides, and different brood rearing temperatures on different parameters like lifespan, foraging activity, and foraging trip duration of worker bees.}, subject = {Biene}, language = {en} } @phdthesis{Saumweber2011, author = {Saumweber, Timo}, title = {Mechanism of Learning and Plasticity in Larval Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-66354}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {According to a changing environment it is crucial for animals to make experience and learn about it. Sensing, integrating and learning to associate different kinds of modalities enables animals to expect future events and to adjust behavior in the way, expected as the most profitable. Complex processes as memory formation and storage make it necessary to investigate learning and memory on different levels. In this context Drosophila melanogaster represents a powerful model organism. As the adult brain of the fly is still quite complex, I chose the third instar larva as model - the more simple the system, the easier to isolate single, fundamental principles of learning. In this thesis I addressed several kinds of questions on different mechanism of olfactory associative and synaptic plasiticity in Drosophila larvae. I focused on short-term memory throughout my thesis. First, investigating larval learning on behavioral level, I developed a one-odor paradigm for olfactory associative conditioning. This enables to estimate the learnability of single odors, reduces the complexity of the task and simplify analyses of "learning mutants". It further allows to balance learnability of odors for generalization-type experiments to describe the olfactory "coding space". Furthermore I could show that innate attractiveness and learnability can be dissociated and found finally that paired presentation of a given odor with reward increase performance, whereas unpaired presentations of these two stimuli decrease performance, indicating that larva are able to learn about the presence as well as about the absence of a reward. Second, on behavioral level, together with Thomas Niewalda and colleagues we focussed on salt processing in the context of choice, feeding and learning. Salt is required in several physiological processes, but can neither be synthesized nor stored. Various salt concentrations shift the valence from attraction to repulsion in reflexive behaviour. Interestingly, the reinforcing effect of salt in learning is shifted by more than one order of magnitude toward higher concentrations. Thus, the input pathways for gustatory behavior appear to be more sensitive than the ones supporting gustatory reinforcement, which is may be due to the dissociation of the reflexive and the reinforcing signalling pathways of salt. Third, in cooperation with Michael Schleyer we performed a series of behavioral gustatory, olfactory preference tests and larval learning experiments. Based on the available neuroanatomical and behavioral data we propose a model regarding chemosensory processing, odor-tastant memory trace formation and the 'decision' like process. It incorporates putative sites of interaction between olfactory and gustatory pathways during the establishment as well as behavioral expression of odor-tastant memory. We claim that innate olfactory behavior is responsive in nature and suggest that associative conditioned behavior is not a simple substitution like process, but driven more likely by the expectation of its outcome. Fourth, together with Birgit Michels and colleagues we investigated the cellular site and molecular mode of Synapsin, an evolutionarily conserved, presynaptic vesicular phosphoprotein and its action in larval learning. We confirmed a previously described learning impairment upon loss of Synapsin. We localized this Synapsin dependent memory trace in the mushroom bodies, a third-order "cortical" brain region, and could further show on molecular level, that Synapsin is as a downstream element of the AC-cAMP-PKA signalling cascade. This study provides a comprehensive chain of explanation from the molecular level to an associative behavioral change. Fifth, in the main part of my thesis I focused on molecular level on another synaptic protein, the Synapse associated protein of 47kDa (Sap47) and its role in larval behavior. As a member of a phylogenetically conserved gene family of hitherto unknown function. It is localized throughout the whole neuropil of larval brains and associated with presynaptic vesicles. Upon loss of Sap47 larvae exhibit normal sensory detection of the to-be-associated stimuli as well as normal motor performance and basic synaptic transmission. Interestingly, short-term plasticity is distorted and odorant-tastant associative learning ability is reduced. This defect in associative function could be rescued by restoring Sap47 expression. Therefore, this report is the first to suggest a function for Sap47 and specifically argues that Sap47 is required for synaptic as well as for behavioral plasticity in Drosophila larva. This prompts the question whether its homologs are required for synaptic and behavioral plasticity also in other species. Further in the last part of my thesis I contributed to the study of Ayse Yarali. Her central topic was the role of the White protein in punishment and relief learning in adult flies. Whereas stimuli that precede shock during training are subsequently avoided as predictors for punishment, stimuli that follow shock during training are later on approached, as they predict relief. Concerning the loss of White we report that pain-relief learning as well as punishment learning is changed. My contribution was a comparison between wild type and the white1118 mutant larvae in odor-reward learning. It turned out that a loss of White has no effect on larval odorant-tastant learning. This study, regarding painrelief learning provides the very first hints concerning the genetic determinants of this form of learning.}, subject = {Taufliege}, language = {en} }