@phdthesis{EbertDuemig2000, author = {Ebert-D{\"u}mig, Regina}, title = {Expression und Regulation 1,25(OH) 2 -Vitamin D 3-responsiver Gene in monozyt{\"a}ren Zellen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-1101}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2000}, abstract = {Das Secosterid Vitamin D3 wird durch die Nahrung aufgenommen oder im Organismus synthetisiert, wobei eine Reaktion in der Haut durch einen photochemischen Prozess katalysiert wird.Durch zwei Hydroxylierungsschritte in Leber und Niere wird Vitamin D3 {\"u}ber 25(OH) Vitamin D3 zum aktiven 1,25(OH)2 Vitamin D3-Hormon. 1,25(OH)2 Vitamin D3 hat eine wichtige Funktion im Knochenstoffwechsel, es reguliert die Ca2+-Resorption im D{\"u}nndarm. Die 1,25(OH)2 Vitamin D3-Synthese in der Niere wird durch Parathormon (PTH) kontrolliert. Ist die Serum Ca2+-Konzentration niedrig, wird PTH ausgesch{\"u}ttet und die 1a-Hydroxylase, das 25(OH) Vitamin D3-aktivierende Enzym, stimuliert. Das Prinzip der (Seco)steroid-Aktivierung und -Inaktivierung in glandul{\"a}ren Organen, wie Leber und Niere mit anschließender Freisetzung der aktiven Hormone und Transport zu den jeweiligen Zielgeweben gilt heute nicht mehr uneingeschr{\"a}nkt. Auch Einzelzellen sind in der Lage Steroid-modifizierende Enzyme, die Hydroxylasen und Dehydrogenasen, zu exprimieren. Monozyt{\"a}re Zellen exprimieren das 1,25(OH)2 Vitamin D3-aktivierende und das -inaktivierende Enzym, die 1a-Hydroxylase und die 24-Hydroxylase. Sie sind somit in der Lage, 1,25(OH)2 Vitamin D3 zu sezernieren, welches parakrin auf Nachbarzellen wirken kann. In diesem Zusammenhang wurde die Expression und Regulation der 1a-Hydroxylase in peripheren Blutmonozyten (PBM) und monozyt{\"a}ren THP1-Zellen untersucht. Durch Supplementation der Zellen mit dem Substrat 25(OH) Vitamin D3 konnte die Produktion an aktivem 1,25(OH)2 Vitamin D3-Hormon in PBM signifikant gesteigert werden. In PBM konnte im Gegensatz zum systemischen Ca2+-Stoffwechsel nur ein geringer Einfluss auf die 1a-Hydroxylase-Aktivit{\"a}t beobachtet werden. Durch RT-PCR-Amplifikation konnte eine Expression des PTH Rezeptors Typ 1 (PTHR1) in PBM und Dendritischen Zellen nachgewiesen werden. Ein weiterer Ligand des PTHR1 ist PTH related Protein (PTHrP), ein Faktor der die Tumorhyperkalz{\"a}mie propagiert. Durch Markierungsexperimente mit fluoreszenz-markiertem PTHrP konnte gezeigt werden, dass PTHrP an die Zellmembran von PBM und Dendritischen Zellen bindet und in den Zellkern von Dendritischen Zellen transportiert wird. Im Rahmen dieser Arbeit wurde die Expression 1,25(OH)2 Vitamin D3-responsive Gene in Monozyten/Makrophagen untersucht. Die Expression der 24-Hydroxylase wird innerhalb der Differenzierung von myeloischen THP1-Zellen zu Makrophagen- bzw. Osteoklasten-{\"a}hnlichen Zellen transient induziert. Als weiteres 1,25(OH)2 Vitamin D3-responsives Gen wurde die Expression von Osteopontin (OPN) untersucht. OPN ist ein vor allem in Knochen vorkommendes Matrixprotein, das wesentlich an der Zelladh{\"a}sion beteiligt ist. OPN wird in THP1-Zellen im Zuge der Differenzierung zunehmend exprimiert. Durch immunhistochemische Untersuchungen konnte OPN in Granulomen von Morbus Crohn- und Leberschnitten detektiert werden. Es spielt hier eine wesentliche Rolle bei der Granulomentstehung. Die Thioredoxin Reduktase 1 (TR1) ist ein Selenoenzym, welches maßgeblich an der Reduktion von Disulfidbindungen in Proteinen beteiligt ist. Es moduliert Protein/Protein- und Protein/DNA-Interaktionen wie die Bindung der Transkriptionsfaktoren AP1 und NFkB an DNA-responsive Elemente. Die Expression der TR1 wird in THP1-Zellen im Rahmen der Differenzierung induziert und ist in differenzierten Zellen maximal. Aktivit{\"a}tsmessungen deckten sich mit dieser Beobachtung. In peripheren Blutmonozyten steigt die TR-Aktivit{\"a}t alleine durch Adh{\"a}sion der Zellen an das Kulturgef{\"a}ß und nach Behandlung mit 1,25(OH)2 Vitamin D3. Die Untersuchungen der vorliegenden Arbeit zeigten eine Abh{\"a}ngigkeit der TR-Aktivit{\"a}t vom Differenzierungsgrad der Zellen und der Supplementation des Mediums mit dem Spurenelement Selen. Die Expression weiterer Selenoproteine in monozyt{\"a}ren Zellen wurde nachgewiesen. So konnten durch 75Selenit-Markierungsexperimente neun Selenoproteine in THP1-Zellen detektiert werden, von denen f{\"u}nf sezerniert werden. Ein weiteres, in monozyt{\"a}ren Zellen charakterisiertes Selenoprotein ist die zellul{\"a}re Glutathionperoxidase. Ihre Aktivit{\"a}t konnte in Selenit-supplementierten Zellen um das 70fache gesteigert werden. Die Kultivierung monozyt{\"a}rer Zellen unter Selenit-Supplementation beeinflusst die Funktion dieser Zellen wesentlich. So konnte beobachtet werden, dass die Anzahl an phagozytierenden, zu Makrophagen differenzierten THP1-Zellen nach Selenit-Supplementation abnahm, w{\"a}hrend die Phagozytoserate der einzelnen Zellen anstieg. Die erzielten Ergebnisse zeigen, dass monozyt{\"a}re Zellen mit Komponenten des 1,25(OH)2 Vitamin D3 Stoffwechsels ausgestattet sind und aktives 1,25(OH)2 Vitamin D3-Hormon produzieren, sezernieren und inaktivieren k{\"o}nnen. Die lokale Kontrolle der 1,25(OH)2 Vitamin D3 Stoffwechsels ausgestattet sind und aktives 1,25(OH)2 Vitamin D3-responsiver Gene, wie die Expression des Selenoproteins TR1, das einen direkten Einfluss auf den Redoxstatus und den Abbau reaktiver Sauerstoffverbindungen in diesen und Nachbarzellen aus{\"u}bt.}, subject = {Vitamin D3}, language = {de} } @phdthesis{AppeltMenzel2016, author = {Appelt-Menzel, Antje}, title = {Etablierung und Qualifizierung eines humanen Blut-Hirn-Schranken-Modells unter Verwendung von induziert pluripotenten und multipotenten Stammzellen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134646}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Die Blut-Hirn-Schranke (BHS) stellt eine der dichtesten und wichtigsten Barrieren zwischen Blutzirkulation und Zentralnervensystem (ZNS) dar. Sie besteht aus spezialisierten Endothelzellen, welche die zerebralen Kapillaren auskleiden und durch sehr dichte Tight Junctions (TJs) miteinander verbunden sind. Weitere Komponenten der dynamischen Blut-Hirn-Schrankenbarriere stellen Perizyten, Astrozyten, Neurone und Mikrogliazellen dar, welche zusammen mit der extrazellul{\"a}ren Matrix der Basalmembran der Gehirnkapillaren und den zuvor genannten Endothelzellen ein komplexes regulatorisches System, die so genannte neurovaskul{\"a}re Einheit bilden (Hawkins und Davis 2005). Die Hauptfunktionen der BHS lassen sich in drei Untergruppen untergliedern, die physikalische, metabolische und Transport-Barriere (Neuhaus und Noe 2010). Haupts{\"a}chlich dient die BHS der Aufrechterhaltung der Hom{\"o}ostase des ZNS und dem Schutz vor neurotoxischen Substanzen sowie Pathogenen, wie Bakterien und Viren. Zudem ist sie auch f{\"u}r die Versorgung der Neuronen mit N{\"a}hrstoffen und regulierenden Substanzen sowie den Efflux von Stoffwechselendprodukten des ZNS zur{\"u}ck ins Blut verantwortlich. F{\"u}r die Entwicklung von Medikamenten zur Behandlung von neurodegenerativen Erkrankungen, wie Morbus Alzheimer, Morbus Parkinson und Multiple Sklerose oder Gehirntumoren, stellt die Dichtigkeit der BHS gegen{\"u}ber Substanzen und die hohe metabolische Aktivit{\"a}t der Endothelzellen aber ein großes Problem dar. Viele Medikamente sind nicht in der Lage in ausreichender Konzentration die BHS zu {\"u}berwinden, um an ihren Wirkort zu gelangen oder werden vor dem Transport metabolisiert und die Wirksamkeit dadurch eingeschr{\"a}nkt. Weiterhin spielen auch Defekte der BHS eine entscheidende Rolle in der Beeinflussung der Pathogenese vieler ZNS-Erkrankungen. Aufgrund des hohen Bedarfs an geeigneten Testsystemen in der Grundlagen- sowie pr{\"a}klinischen Forschung f{\"u}r Medikamentenentwicklung und Infektionsstudien wurden eine Vielzahl unterschiedlicher BHS-Modelle entwickelt. Neben in silico-, azellul{\"a}ren in vitro- und in vivo-Modellen sind auch zahlreiche zellbasierte Modelle der BHS entwickelt worden. Standardisierte Modelle auf Basis immortalisierter Zelllinien jedoch weisen nur eine inhomogene TJ-Expression auf und verf{\"u}gen meist {\"u}ber eine geringe Barriereintegrit{\"a}t, erfasst {\"u}ber transendotheliale elektrische Widerst{\"a}nde (TEER) unter 150 · cm2 (Deli et al. 2005). Im Vergleich dazu wurden in Tierexperimenten TEER-Werte von mehr als 1500 · cm2 an der BHS gemessen (Butt et al. 1990; Crone und Olesen 1982). Die Verf{\"u}gbarkeit humaner prim{\"a}rer BHS-Zellen ist sehr limitiert und ihr Einsatz nicht nur im Hinblick auf ethische Aspekte bedenklich. Humane Gehirnzellen k{\"o}nnen z. B. aus Biopsie- oder Autopsiematerial von Patienten mit Epilepsie oder Gehirntumoren isoliert werden. Allerdings besteht hier das Risiko, dass die isolierten Zellen krankheitsbedingt ver{\"a}ndert sind, was die Eigenschaften der BHS-Modelle erheblich beeinflussen kann. Eine Alternative, die diese Probleme umgeht, ist die Verwendung von humanen induziert pluripotenten Stammzellen (hiPSCs), um standardisierte humane BHS-Modelle unter reproduzierbaren Bedingungen bereitzustellen. Im Rahmen dieser Arbeit ist es gelungen, hiPSCs in vitro nach etablierten und standardisierten Methoden in Endothelzellen der BHS, neurale Stammzellen (hiPS-NSCs) sowie Astrozyten (hiPS-A) zu differenzieren (Lippmann et al. 2012; Lippmann et al. 2014; Wilson et al. 2015; Yan et al. 2013;Reinhardt et al. 2013) und zum Aufbau der Modelle einzusetzen. Die Endothelzellen wurden mit Hilfe protein- und genbasierter Nachweismethoden auf das Vorhandensein von endothelzellspezifischen TJ-Markern sowie spezifischen Transportern untersucht und funktionell charakterisiert. Die Kryokonservierung der hiPS-EC-Progenitoren, die im Rahmen der vorliegenden Arbeit entwickelt wurde, erm{\"o}glicht eine gr{\"o}ßere r{\"a}umliche und zeitliche Flexibilit{\"a}t beim Arbeiten mit den stammzellbasierten Modellen sowie das Anlegen standardisierter Zellbanken. Weiterhin wurden multipotente NSCs aus fetalen Gehirnbiopsien isoliert (fNSCs) und als Kontrollkulturen zu den hiPS-NSCs f{\"u}r den Aufbau von BHS-Modellen eingesetzt. Mit dem Ziel die in vivo-BHS bestm{\"o}glich zu imitieren und die Modelleigenschaften zu optimieren, wurde ein Set aus zehn unterschiedlichen BHS-Modellen basierend auf prim{\"a}ren Zellen, hiPSCs und fNSCs analysiert. Der Aufbau der BHS-Modelle erfolgte unter Verwendung von Transwellsystemen. Durch die systematische Untersuchung des Einflusses der unterschiedlichen Zelltypen der neurovaskul{\"a}ren Einheit auf die Barriereintegrit{\"a}t und Genexpression des BHS-Endothels, konnten die Quadrupel-Kulturen mit Perizyten, Astrozyten und hiPS-NSCs als die Kultur mit den physiologischsten Eigenschaften identifiziert werden. Auf Grund der signifikant erh{\"o}hten TEER-Werte von bis zu 2500 · cm2 und einer um mindestens 1,5-fachen Steigerung der Genexpression BHSrelevanter Transporter und TJ-Molek{\"u}le gegen{\"u}ber den Monokulturen, wurden diese Modelle f{\"u}r weiterf{\"u}hrende Studien ausgew{\"a}hlt. Das Vorhandensein eines komplexen, in vivo-{\"a}hnlichen TJ-Netzwerkes, bestehend aus Occludin, Claudin 1, 3, 4 und 5, konnte mittels quantitativer Realtime-PCR, Western Blot sowie ultrastruktureller Analyse in der Gefrierbruch- und Raster-Elektronenmikroskopie nachgewiesen werden. Neben der Begrenzung der parazellul{\"a}ren Permeabilit{\"a}t, welche {\"u}ber die geringe Permeation von FITC-Dextran (4 kDa und 40 kDa), Fluoreszein und Lucifer Yellow nachgewiesen wurde, stellt die BHS ebenfalls eine Barriere f{\"u}r den transzellul{\"a}ren Transport von Substanzen dar. Eine Beurteilung der Modelle hinsichtlich der Qualifikation f{\"u}r die Nutzung im Wirkstoffscreening wurde mit Hilfe von Transportversuchen unter dem Einsatz von BHS-relevanten Referenzsubstanzen durchgef{\"u}hrt. Die Klassifikation der Testsubstanzen erfolgte analog ihrer Permeationsgeschwindigkeiten: Diazepam und Koffein gelten als schnell transportierte Wirkstoffe, Ibuprofen, Celecoxib und Diclofenac werden mit einer mittleren Geschwindigkeit {\"u}ber die BHS transportiert und Loratadin sowie Rhodamin 123 sind langsam permeierende Substanzen. Innerhalb der Versuche mit den Quadrupelkulturen wurde diese Reihenfolge best{\"a}tigt, lediglich f{\"u}r Koffein wurde ein signifikant niedrigerer Permeationskoeffizient verglichen mit der Monokultur erzielt. Der Einsatz der hiPSC-Technologie erm{\"o}glicht es zudem, aus einer Stammzelllinie große Mengen an humanen somatischen Zelltypen zu generieren und f{\"u}r gezielte Anwendungen bereitzustellen. Es konnte im Rahmen dieser Arbeit gezeigt werden, dass mit Hilfe eines eigens f{\"u}r diese Zwecke konstruierten R{\"u}hrreaktorsystems eine reproduzierbare Expansion der hiPSCs unter definierten Bedingungen erm{\"o}glicht wurde. Basierend auf dieser Grundlage ist nun ein Hochdurchsatz-Screening von Medikamenten denkbar. Die in dieser Arbeit pr{\"a}sentierten Daten belegen die Etablierung eines stammzellbasierten in vitro- Quadrupelmodels der humanen BHS, welches {\"u}ber in vivo-{\"a}hnliche Eigenschaften verf{\"u}gt. Die Anforderungen, die an humane BHS-Modelle gestellt werden, wie die Reproduzierbarkeit der Ergebnisse, eine angemessene Charakterisierung, welche die Untersuchung der Permeabilit{\"a}t von Referenzsubstanzen einschließt, die Analyse der Expression von BHS-relevanten Transportermolek{\"u}len sowie die solide und physiologische Morphologie der Zellen, wurden erf{\"u}llt. Das etablierte BHS-Modell kann in der Pharmaindustrie f{\"u}r die Entwicklung von Medikamenten eingesetzt werden. Ausreichend qualifizierte Modelle k{\"o}nnen hier in der pr{\"a}klinischen Forschung genutzt werden, um Toxizit{\"a}ts- und Transportstudien an neu entwickelten Substanzen durchzuf{\"u}hren und eine bessere in vitro-in vivo-Korrelation der Ergebnisse zu erm{\"o}glichen oder Mechanismen zu entwickeln, um die BHS-Barriere gezielt zu {\"u}berwinden.}, subject = {Blut-Hirn-Schranke}, language = {de} } @phdthesis{Kaltdorf2020, author = {Kaltdorf, Martin Ernst}, title = {Analyse von regulatorischen Netzwerken bei Zelldifferenzierung und in der Infektionsbiologie}, doi = {10.25972/OPUS-19852}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-198526}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Das zentrale Paradigma der Systembiologie zielt auf ein m{\"o}glichst umfassendes Ver-st{\"a}ndnis der komplexen Zusammenh{\"a}nge biologischer Systeme. Die in dieser Arbeit angewandten Methoden folgen diesem Grundsatz. Am Beispiel von drei auf Basis von Datenbanken und aktueller Literatur rekonstruier-ten Netzwerkmodellen konnte in der hier vorliegenden Arbeit die G{\"u}ltigkeit analyti-scher und pr{\"a}diktiver Algorithmen nachgewiesen werden, die in Form der Analy-sesoftware Jimena angewandt wurden. Die daraus resultierenden Ergebnisse sowohl f{\"u}r die Berechnung von stabilen Systemzust{\"a}nden, der dynamischen Simulation, als auch der Identifikation zentraler Kontrollknoten konnten experimentell validiert wer-den. Die Ergebnisse wurden in einem iterativen Prozess verwendet werden um das entsprechende Netzwerkmodell zu optimieren. Beim Vergleich des Verhaltens des semiquantitativ ausgewerteten regulatorischen Netzwerks zur Kontrolle der Differenzierung humaner mesenchymaler Stammzellen in Chondrozyten (Knorpelbildung), Osteoblasten (Knochenbildung) und Adipozyten (Fett-zellbildung) konnten 12 wichtige Faktoren (darunter: RUNX2, OSX/SP7, SOX9, TP53) mit Hilfe der Berechnung der Bedeutung (Kontrollzentralit{\"a}t der Netzwerkknoten identifi-ziert werden). Der Abgleich des simulierten Verhaltens dieses Netzwerkes ergab eine {\"U}bereinstimmung mit experimentellen Daten von 47,2\%, bei einem widerspr{\"u}chlichen Verhalten von ca. 25\%, dass unter anderem durch die tempor{\"a}re Natur experimentel-ler Messungen im Vergleich zu den terminalen Bedingungen des Berechnung der stabilen Systemzust{\"a}nde erkl{\"a}rt werden kann. Bei der Analyse des Netzwerkmodells der menschlichen Immunantwort auf eine Infek-tion durch A. fumigatus konnten vier Hauptregulatoren identifiziert werden (A. fumi-gatus, Blutpl{\"a}ttchen, hier Platelets genannt, und TNF), die im Zusammenspiel mit wei-teren Faktoren mit hohen Zentralit{\"a}tswerten (CCL5, IL1, IL6, Dectin-1, TLR2 und TLR4) f{\"a}hig sind das gesamte Netzwerkverhalten zu beeinflussen. Es konnte gezeigt werden, dass sich das Aktivit{\"a}tsverhalten von IL6 in Reaktion auf A. fumigatus und die regulato-rische Wirkung von Blutpl{\"a}ttchen mit den entsprechenden experimentellen Resultaten deckt. Die Simulation, sowie die Berechnung der stabilen Systemzust{\"a}nde der Immunantwort von A. thaliana auf eine Infektion durch Pseudomonas syringae konnte zeigen, dass die in silico Ergebnisse mit den experimentellen Ergebnissen {\"u}bereinstimmen. Zus{\"a}tzlich konnten mit Hilfe der Analyse der Zentralit{\"a}tswerte des Netzwerkmodells f{\"u}nf Master-regulatoren identifiziert werden: TGA Transkriptionsfaktor, Jasmons{\"a}ure, Ent-Kaurenoate-Oxidase, Ent-kaurene-Synthase und Aspartat-Semialdehyd-Dehydrogenase. W{\"a}hrend die ersteren beiden bereits lange als wichtige Regulatoren f{\"u}r die Gib-berellin-Synthese bekannt sind, ist die immunregulatorische Funktion von Aspartat-Semialdehyd-Dehydrogenase bisher weitgehend unbekannt.}, subject = {Netzwerksimulation}, language = {de} }