@phdthesis{Mueller2009, author = {M{\"u}ller, Stefanie}, title = {Funktionale und molekulare Charakterisierung des ArsRS Zweikomponenten-Systems sowie der Response-Regulatoren HP1021 und HP1043 von Helicobacter pylori}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-36263}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Bakterien sind in der Lage, sich schnell an wechselnde Umweltbedingungen anzupassen. Eine wichtige Rolle bei der Wahrnehmung von verschiedensten Umweltreizen und der zellul{\"a}ren Antwort spielt die Genregulation durch Zweikomponenten-Systeme. Gut charakterisiert ist das ArsRS Zweikomomponenten-System in H. pylori, welches an der Ausbildung der S{\"a}ureresistenz beteiligt ist und dem Bakterium so die Kolonisierung der Magenschleimhaut erm{\"o}glicht. Die Histidin-Kinase ArsS wird in Gegenwart von S{\"a}ure aktiviert und phosphoryliert den Response-Regulator ArsR, der die Transkription von Target-Genen reguliert. In der periplasmatischen Sensordom{\"a}ne der Histidin-Kinase ArsS sind sieben Histidinreste vorhanden, die aufgrund ihres pKa-Wertes von 6,0 bei Absenken des pH Wertes von pH 7 auf pH 5, was eine Aktivierung der Histidin-Kinase zur Folge hat, protoniert werden k{\"o}nnten. Es konnte gezeigt werden, dass der Histidinrest H94 der periplasmatischen Sensordom{\"a}ne einen wesentliche Rolle bei der S{\"a}urewahrnehmung durch die Histidin-Kinase ArsS spielt. Die Einf{\"u}hrung einer positiv geladenen AS an dieser Position allein reicht jedoch nicht aus, um die Kinase zu aktivieren, weshalb unklar bleibt, ob eine Protonierung des Histidinrestes H94 in vivo die S{\"a}urewahrnehmung vermittelt. Weiterhin konnten Indizien darauf erhalten werden, dass neben dem Histidinrest H94 noch weitere Aminos{\"a}uren an der S{\"a}urewahrnehmung durch die Histidin-Kinase beteiligt sind. Der Aspartatrest D124 leistet unter den negativ geladenen AS vermutlich den gr{\"o}ßten Beitrag zur S{\"a}urewahrnehmung. In den mit H. pylori nahe verwandten Arten Helicobacter hepaticus, Wolinella succinogenes und Campylobacter jejuni sind Orthologe zu dem ArsRS Zweikomponenten-System vorhanden. Um zu untersuchen, ob es sich bei der S{\"a}urewahrnehmung durch die Histidin-Kinase ArsS um eine spezifische Anpassung von H. pylori an sein Habitat handelt oder ob S{\"a}ure einen allgemeinen Stimulus der ArsS-orthologen Kinasen darstellt, wurden Mutanten im genetischen Hintergrund von H. pylori G27 konstruiert, in welchen die Histidin-Kinase ArsS durch die orthologen Kinasen HH1608, CJ1262 und WS1818 substituiert wurde. Durch Transkriptionsstudien konnte gezeigt werden, dass die Kinase WS1818 eine gesteigerte Aktivit{\"a}t bei saurem pH-Wert aufweist. Auch die Kinase HH1607 kann S{\"a}ure als einen Umweltreiz wahrnehmen, jedoch deutlich weniger effektiv als die Kinasen ArsS und WS1818. Ob die Zweikomponenten-Systeme HH1608/HH1607 und WS1817/WS1818 in vivo in H. hepaticus und W. succinogenes an der Wahrnehmung von S{\"a}ure und evtl. an der Ausbildung einer S{\"a}ureresistenz beteiligt sind, ist unklar, da {\"u}ber die Funktion dieser Zweikomponenten-Systeme bisher nichts bekannt ist. Die Kinase CJ1262 ist nicht in der Lage, S{\"a}ure als einen Umweltreiz wahrzunehmen. Die beiden Response-Regulatoren HP1043 und HP1021 spielen vermutlich eine Rolle bei der Regulation von Genen, deren Produkte eine wichtige Funktion f{\"u}r das vegetative Zellwachstum haben. Die Aktivit{\"a}t der beiden RR wird entgegen dem g{\"a}ngigen Zweikomponenten-System-Paradigma nicht {\"u}ber eine Phosphorylierung moduliert. In der vorliegenden Arbeit wurde analysiert, ob eine strikte Expressionskontrolle f{\"u}r die wachstumsassoziierten Funktion dieser Response-Regulatoren von Bedeutung ist. Zu diesem Zweck wurden verschieden Mutanten konstruiert, in welchen die Transkription der Gene hp1021 und hp1043 unter der Kontrolle von unterschiedlich regulierten Promotoren stattfindet. Es konnte gezeigt werden, dass die Expression des Gens hp1043 sowohl transkriptionell als auch posttranskriptionell und/oder posttranslational strikt reguliert wird. Es kann deshalb postuliert werden, dass die Aktivit{\"a}t des RR HP1043 {\"u}ber die vorhandene Konzentration an Regulator in der Bakterienzelle beeinflusst wird. Die Expression des Gens hp1021 wird nicht strikt reguliert. Auf welche Weise die Aktivit{\"a}t des RR HP1021 moduliert wird, bleibt unklar.}, subject = {Helicobacter pylori}, language = {de} } @phdthesis{Krueger2012, author = {Kr{\"u}ger, Beate}, title = {Integration und Kombination bioinformatischer Methoden in Biotechnologie, synthetischer Biologie und Pharmaindustrie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70702}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Die Bioinformatik ist eine interdisziplin{\"a}re Wissenschaft, welche Probleme aus allen Lebenswissenschaften mit Hilfe computergest{\"u}tzter Methoden bearbeitet. Ihr Ziel ist es, die Verarbeitung und Interpretation großer Datenmengen zu erm{\"o}glichen. Zudem unterst{\"u}tzt sie den Designprozess von Experimenten in der Synthetischen Biologie. Die synthetische Biologie besch{\"a}ftigt sich mit der Generierung neuer Komponenten und deren Eigenschaften, welche durch die Behandlung und Manipulation lebender Organismen oder Teilen daraus entstehen. Ein besonders interessantes Themengebiet hierbei sind Zweikomponenten-Systeme (Two-Component System, TCS). TCS sind wichtige Signalkaskaden in Bakterien, welche in der Lage sind Informationen aus der Umgebung in eine Zelle zu {\"u}bertragen und darauf zu reagieren. Die vorliegende Dissertation besch{\"a}ftigt sich mit der Beurteilung, Nutzung und Weiterentwicklung von bioinformatischen Methoden zur Untersuchung von Proteininteraktionen und biologischen Systemen. Der wissenschaftliche Beitrag der vorliegenden Arbeit kann in drei Aspekte unterteilt werden: - Untersuchung und Beurteilung von bioinformatischen Methoden und Weiterf{\"u}hrung der Ergebnisse aus der vorhergehenden Diplomarbeit zum Thema Protein-Protein-Interaktionsvorhersagen. - Analyse genereller evolution{\"a}rer Modifikationsm{\"o}glichkeiten von TCS sowie deren Design und spezifische Unterschiede. - Abstraktion bzw. Transfer der gewonnenen Erkenntnisse auf technische und biologische Zusammenh{\"a}nge. Mit dem Ziel das Design neuer Experimente in der synthetischen Biologie zu vereinfachen und die Vergleichbarkeit von technischen und biologischen Prozessen sowie zwischen Organismen zu erm{\"o}glichen. Das Ergebnis der durchgef{\"u}hrten Studie zeigte, dass Zweikomponenten-Systeme in ihrem Aufbau sehr konserviert sind. Nichtsdestotrotz konnten viele spezifische Eigenschaften und drei generelle Modifikationsm{\"o}glichkeiten entdeckt werden. Die Untersuchungen erm{\"o}glichten die Identifikation neuer Promotorstellen, erlaubten aber auch die Beschreibung der Beschaffenheit unterschiedlicher Signalbindestellen. Zudem konnten bisher fehlende Komponenten aus TCS entdeckt werden, ebenso wie neue divergierte TCS-Dom{\"a}nen im Organismus Mycoplasma. Eine Kombination aus technischen Ans{\"a}tzen und synthetischer Biologie vereinfachte die gezielte Manipulation von TCS oder anderen modularen Systemen. Die Etablierung der vorgestellten zweistufigen Modul-Klassifikation erm{\"o}glichte eine effizientere Analyse modular aufgebauter Prozesse und erlaubte somit das molekulare Design synthetischer, biologischer Anwendungen. Zur einfachen Nutzung dieses Ansatzes wurde eine frei zug{\"a}ngliche Software GoSynthetic entwickelt. Konkrete Beispiele demonstrierten die praktische Anwendbarkeit dieser Analysesoftware. Die vorgestellte Klassifikation der synthetisch-biologischen und technischen Einheiten soll die Planung zuk{\"u}nftiger Designexperimente vereinfachen und neue Wege f{\"u}r sinnverwandte Bereiche aufzeigen. Es ist nicht die Hauptaufgabe der Bioinformatik, Experimente zu ersetzen, sondern resultierende große Datenmengen sinnvoll und effizient auszuwerten. Daraus sollen neue Ideen f{\"u}r weitere Analysen und alternative Anwendungen gewonnen werden, um fehlerhafte oder falsche Ans{\"a}tze fr{\"u}hzeitig zu erkennen. Die Bioinformatik bietet moderne, technische Verfahren, um vertraute, aber oft m{\"u}hsame experimentelle Wege durch neue, vielversprechende Ans{\"a}tze zur Datenstrukturierung und Auswertung großer Datenmengen zu erg{\"a}nzen. Neue Sichtweisen werden durch die Erleichterung des Testprozederes gef{\"o}rdert. Die resultierende Zeitersparnis f{\"u}hrt zudem zu einer Kostenreduktion.}, subject = {Biotechnologie}, language = {de} }