@phdthesis{Ostner2002, author = {Ostner, Julia}, title = {Sex-specific reproductive strategies in redfronted lemurs (Eulemur fulvus rufus, Primates, Lemuridae)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-5011}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {The number of males in animal groups is an essential determinant of male and female reproductive strategies. Females may benefit from living with several males, whereas males generally strive to monopolize a group of females. Due to male intrasexual competition, the sex ratio of groups of anthropoid primates is generally female-biased. Gregarious Malagasy lemurs deviate from theoretical expectations derived from sexual selection theory and from patterns found among anthropoids because they live in relatively small groups with an even or male-biased adult sex ratio and lack sexual dimorphism. The aim of this thesis was to investigate sex-specific reproductive strategies relating to the unusual group composition of redfronted lemurs (Eulemur fulvus rufus) by combining behavioral, demographic and endocrinological data. In the first of a set of four studies I investigated the applicability of non-invasive endocrine measurements for monitoring ovarian function in wild redfronted lemur females in order to evaluate the degree of estrus synchrony. Further, I tested the prediction that males living in multi-male groups rely on indirect mechanisms of intrasexual competition, such as physiological suppression of testicular function. Several possible benefits gained from living with many males have been proposed and the hypothesis that additional males improve social thermoregulation was tested in the third study. Finally, I examined the proximate determinants of the unusual sex ratio within groups, the variation in the adult sex ratio as well as possible social benefits of the high number of males for both sexes. The study was conducted in Kirindy Forest, Madagascar, between April 1999 and July 2000. I recorded >3000 hours of focal animal data on social and sexual behavior of all adult members of five groups. Additionally, >2200 fecal samples of males and females were collected for subsequent hormone analysis using enzymeimmunoassay (EIA). Further, I analyzed demographic data from seven Eulemur fulvus rufus groups collected between 1996 and 2002. The analyses of fecal estrogen and progestogen excretion in wild and captive females revealed that monitoring ovarian function is principally possible in redfronted lemurs, as demonstrated by the analysis of samples from captive females. Characterization of ovarian cycles in wild females, however, was not possible, because of a high day-to-day variability in excreted hormones. Nevertheless, the study provided reliable information on gestation and cycle length as well as endocrine changes associated with gestation. Additionally, I established a method for prenatal sex determination using maternal fecal samples collected during late gestation. The excretion pattern of androgens in samples of males revealed no differences between dominant and subordinate males, indicating that dominant males did not suppress the endocrine function of subordinate rivals. High frequencies of matings in combination with large testes size suggest that male reproductive competition relies at least partly on sperm competition. Females did not benefit from the high number of males in their groups in terms of improved thermoregulation because surplus males did not participate frequently in huddling groups with females. Analysis of the demographic data revealed that birth and mortality rates were not sex-biased and that males migrated considerably more frequently than females, providing no proximate explanation for the unusual sex ratio. Females in this study may proximately regulate group composition by synchronizing their fertile periods, which were inferred indirectly from the temporal distribution of births within groups. Both males and females benefit from the high number of co-resident males because reduced male group size seemed to be the main predictor of take-over rate, and thus, infanticide risk. The results of these studies suggest that certain life history traits (fast maturation, short inter-birth intervals) may ultimately determine the high number of males and the lack of single-male groups seen in redfronted lemurs. An accelerated male life history may facilitate joint group transfers and take-overs of male coalitions without a transitional time outside bisexual groups. Because males and females both benefit from a high number of males the conflict of interests between the sexes is considerably defused.}, subject = {Rotstirnmaki}, language = {en} } @article{KottlerSchartl2018, author = {Kottler, Verena A. and Schartl, Manfred}, title = {The colorful sex chromosomes of teleost fish}, series = {Genes}, volume = {9}, journal = {Genes}, number = {5}, doi = {10.3390/genes9050233}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-176587}, pages = {233}, year = {2018}, abstract = {Teleost fish provide some of the most intriguing examples of sexually dimorphic coloration, which is often advantageous for only one of the sexes. Mapping studies demonstrated that the genetic loci underlying such color patterns are frequently in tight linkage to the sex-determining locus of a species, ensuring sex-specific expression of the corresponding trait. Several genes affecting color synthesis and pigment cell development have been previously described, but the color loci on the sex chromosomes have mostly remained elusive as yet. Here, we summarize the current knowledge about the genetics of such color loci in teleosts, mainly from studies on poeciliids and cichlids. Further studies on these color loci will certainly provide important insights into the evolution of sex chromosomes.}, language = {en} }