@phdthesis{Keller2002, author = {Keller, Andreas}, title = {Genetic Intervention in Sensory Systems of a Fly}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-680}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Die vorliegende Arbeit vergleicht Transgene, die in Drosophila Neuronen exprimiert wurden, um diese abzut{\"o}ten oder zu blockieren. Tetanus Neurotoxin erwies sich als sehr effizient, um chemische Synapsen zu blockieren. Synapsen, die aus einer chemischen und einer elektrischen Komponente bestehen, ließen sich dagegen mit einem ektopisch exprimierten humanen Kalium-Kanal zuverl{\"a}ssiger ausschalten. Es wurden drei M{\"o}glichkeiten verglichen, eine zeitliche Kontrolle {\"u}ber die Funktion von Neuronen zu erlangen. Keines der getesteten Systeme erwies sich als universell anwendbar, aber die durch Rekombination induzierte Tetanus Neurotoxin Expression ist ein vielversprechender Ansatz. Die aus dieser vergleichenden methodischen Studie gewonnenen Ergebnisse wurden angewendet, um die Rolle von Neuronen in sensorischen Systemen bei der Verarbeitung verschiedener sensorischer Informationen zu untersuchen. Chemische und mechanische Rezeptorneuronen konnten den olfaktorisch gesteuerten Verhaltensweisen beziehungsweise den lokomotorischen Leistungen, denen sie zu Grunde liegen, zugeordnet werden. Hauptthema der Arbeit ist die Suche nach Neuronen, die an der Bewegungsdetektion im visuellen System beteiligt sind. Dabei zeigte sich, daß weder L2 noch L4 Neuronen im ersten visuellen Neuropil essentiell f{\"u}r die Detektion von Bewegung sind. Vielmehr deuten die Ergebnisse darauf hin, daß die Bewegungsdetektion {\"u}ber das Netzwerk der amacrinen Zellen (a) erfolgt. Die f{\"u}r vertikale Bewegung sensitiven VS Zellen in der Lobula Platte erwiesen sich als nicht notwendig f{\"u}r die Verhaltensreaktionen auf vertikale Bewegungsreize. Daraus folgt auch, daß in der Strukturmutante optomotor blind das Fehlen der VS Zellen nicht urs{\"a}chlich f{\"u}r die stark eingeschr{\"a}nkten Reaktionen auf vertikale Bewegung ist. Ein anderer Defekt in optomotor blind muß daf{\"u}r verantwortlich sein. Die Arbeit zeigt das große Potential der beschriebenen Methoden zur Untersuchung der Informationsverarbeitung im Nervensystem von Drosophila. Einzelne Neuronengruppen konnten komplexen Verhaltensweisen zugeordnet werden und Theorien {\"u}ber die Informationsverarbeitung konnten in Verhaltensexperimenten mit transgenen Fliegen getestet werden. Eine weitere Verfeinerung der Methodik zur genetischen Intervention wird das Drosophila Gehirn zu einem noch besseren Modell f{\"u}r die Informationsverarbeitung in Nervensystemen machen.}, subject = {Taufliege}, language = {en} } @phdthesis{Rister2008, author = {Rister, Jens}, title = {Genetic dissection of peripheral pathways in the visual system of Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-25980}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Die visuellen Systeme von Vertebraten und Invertebraten weisen {\"A}hnlichkeiten in den ersten Schritten visueller Informationsverarbeitung auf. Im menschlichen Gehirn werden zum Beispiel die Modalit{\"a}ten Farbe, Form und Bewegung separat in parallelen neuronalen Pfaden verarbeitet. Dieses grundlegende Merkmal findet sich auch bei der Fliege Drosophila melanogaster, welche eine {\"a}hnliche Trennung in farbsensitive und (farbenblinde) bewegungssensitive Pfade aufweist, die durch zwei verschiedene Gruppen von Photorezeptoren (dem R1-6 und dem R7/8 System) determiniert werden. Fliegen haben ein hoch organisiertes visuelles System, welches durch die repetitive, retinotope Organisation von vier Neuropilen charakterisiert ist: Dies sind die Lamina, die Medulla, die Lobula und die Lobulaplatte. Jedes einzelne besteht aus Kolumnen, die denselben Satz von Nervenzellen enthalten. In der Lamina formen Axonb{\"u}ndel von sechs Photorezeptoren R1-6, die auf denselben Bildpunkt blicken, S{\"a}ulen, die als Cartridges bezeichnet werden. Diese sind die funktionellen visuellen „sampling units" und sind mit vier Typen von Interneuronen erster Ordnung assoziiert, die von R1-6 den gleichen Input erhalten: L1, L2, L3 und die Amakrinzellen (amc, mit ihrem postsynaptischen Partner T1). Diese stellen parallele Pfade dar, die auf anatomischer Ebene im Detail untersucht wurden; jedoch ist wenig {\"u}ber ihre funktionelle Rolle bei der Verarbeitung f{\"u}r das Verhalten relevanter Information bekannt, z.B. hinsichtlich der Blickstabilisierung, der visuellen Kurskontrolle oder der Fixation von Objekten. Die Verf{\"u}gbarkeit einer Vielfalt von neurogenetischen Werkzeugen f{\"u}r die Struktur-Funktionsanalyse bei Drosophila erm{\"o}glicht es, erste Schritte in Richtung einer genetischen Zerlegung des visuellen Netzwerks zu unternehmen, das Bewegungs- und Positionssehen vermittelt. In diesem Zusammenhang erwies sich die Wahl des Effektors als entscheidend. {\"U}berraschenderweise wurde festgestellt, dass das clostridiale Tetanus-Neurotoxin die Photorezeptorsynapsen adulter Drosophila Fliegen nicht blockiert, hingegen irreversible Sch{\"a}den bei Expression w{\"a}hrend deren Entwicklung verursacht. Aus diesem Grund wurde das dominant-negative shibire Allel shits1, welches sich als geeigneter erwies, zur Blockierung der Lamina Interneurone verwendet, um die Notwendigkeit der jeweiligen Pfade zu analysieren. Um festzustellen, ob letztere auch hinreichend f{\"u}r das gleiche Verhalten waren, wurde f{\"u}r die umgekehrte Strategie die Tatsache ausgenutzt, daß die Lamina Interneurone Histaminrezeptoren exprimieren, die vom ort Gen kodiert werden. Die spezifische Rettung der ort Funktion in definierten Pfaden im mutanten Hintergrund erm{\"o}glichte festzustellen, ob sie f{\"u}r eine bestimmte Funktion hinreichend waren. Diese neurogenetischen Methoden wurden mit der optomotorischen Reaktion und dem objektinduzierten Orientierungsverhalten als Verhaltensmaß kombiniert, um folgende Fragen innerhalb dieser Doktorarbeit zu beantworten: (a) Welche Pfade stellen einen Eingang in elementare Bewegungsdetektoren dar und sind notwendig und/oder hinreichend f{\"u}r die Detektion gerichteter Bewegung? (b) Gibt es Pfade, die spezifisch Reaktionen auf unidirektionale Bewegung vermitteln? (c) Welche Pfade sind notwendig und/oder hinreichend f{\"u}r das objektinduzierte Orientierungsverhalten? Einige grundlegende Eigenschaften des visuellen Netzwerks konnten dabei aufgedeckt werden: Die zwei zentralen Cartridge Pfade, die von den großen Monopolarzellen L1 und L2 repr{\"a}sentiert werden, haben eine Schl{\"u}sselfunktion bei der Bewegungsdetektion. {\"U}ber ein breites Spektrum von Reizbedingungen hinweg sind die beiden Subsysteme redundant und k{\"o}nnen Bewegung unabh{\"a}ngig voneinander verarbeiten. Um eine Beeintr{\"a}chtigung des Systems festzustellen, wenn nur einer der beiden Pfade intakt ist, muß dieses an die Grenzen seiner Leistungsf{\"a}higkeit gebracht werden. Bei niedrigem Signal/Rauschverh{\"a}ltnis, d.h. bei geringem Musterkontrast oder geringer Hintergrundbeleuchtung, hat der L2 Pfad eine h{\"o}here Sensitivit{\"a}t. Bei mittlerem Musterkontrast sind beide Pfade auf die Verarbeitung unidirektionaler Bewegung in entgegengesetzten Reizrichtungen spezialisiert. Im Gegensatz dazu sind weder der L3, noch der amc/T1 Pfad notwendig oder hinreichend f{\"u}r die Detektion von Bewegungen. W{\"a}hrend der erstere Positionsinformation f{\"u}r Orientierungsverhalten zu verarbeiten scheint, nimmt der letztere eine modulatorische Rolle bei mittlerem Kontrast ein. Es stellte sich heraus, daß das Orientierungsverhalten noch robuster als das Bewegungssehen ist und m{\"o}glicherweise auf einem weniger komplizierten Mechanismus beruht, da dieser keinen nichtlinearen Vergleich der Signale benachbarter visueller „sampling units" ben{\"o}tigt. Die Fixation von Objekten setzt nicht grunds{\"a}tzlich das Bewegungssehen voraus, allerdings verbessert die Detektion von Bewegung die Fixation von Landmarken, im besonderen, wenn diese schmal sind oder einen geringen Kontrast aufweisen.}, subject = {Genetik}, language = {en} } @article{StreinzerBrockmannNagarajaetal.2013, author = {Streinzer, Martin and Brockmann, Axel and Nagaraja, Narayanappa and Spaethe, Johannes}, title = {Sex and Caste-Specific Variation in Compound Eye Morphology of Five Honeybee Species}, series = {PLoS ONE}, journal = {PLoS ONE}, doi = {10.1371/journal.pone.0057702}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96412}, year = {2013}, abstract = {Ranging from dwarfs to giants, the species of honeybees show remarkable differences in body size that have placed evolutionary constrains on the size of sensory organs and the brain. Colonies comprise three adult phenotypes, drones and two female castes, the reproductive queen and sterile workers. The phenotypes differ with respect to tasks and thus selection pressures which additionally constrain the shape of sensory systems. In a first step to explore the variability and interaction between species size-limitations and sex and caste-specific selection pressures in sensory and neural structures in honeybees, we compared eye size, ommatidia number and distribution of facet lens diameters in drones, queens and workers of five species (Apis andreniformis, A. florea, A. dorsata, A. mellifera, A. cerana). In these species, male and female eyes show a consistent sex-specific organization with respect to eye size and regional specialization of facet diameters. Drones possess distinctly enlarged eyes with large dorsal facets. Aside from these general patterns, we found signs of unique adaptations in eyes of A. florea and A. dorsata drones. In both species, drone eyes are disproportionately enlarged. In A. dorsata the increased eye size results from enlarged facets, a likely adaptation to crepuscular mating flights. In contrast, the relative enlargement of A. florea drone eyes results from an increase in ommatidia number, suggesting strong selection for high spatial resolution. Comparison of eye morphology and published mating flight times indicates a correlation between overall light sensitivity and species-specific mating flight times. The correlation suggests an important role of ambient light intensities in the regulation of species-specific mating flight times and the evolution of the visual system. Our study further deepens insights into visual adaptations within the genus Apis and opens up future perspectives for research to better understand the timing mechanisms and sensory physiology of mating related signals.}, language = {en} } @phdthesis{Streinzer2013, author = {Streinzer, Martin}, title = {Sexual dimorphism of the sensory systems in bees (Hymenoptera, Apoidea) and the evolution of sex-specific adaptations in the context of mating behavior}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78689}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Bees have had an intimate relationship with humans for millennia, as pollinators of fruit, vegetable and other crops and suppliers of honey, wax and other products. This relationship has led to an extensive understanding of their ecology and behavior. One of the most comprehensively understood species is the Western honeybee, Apis mellifera. Our understanding of sex-specific investment in other bees, however, has remained superficial. Signals and cues employed in bee foraging and mating behavior are reasonably well understood in only a handful of species and functional adaptations are described in some species. I explored the variety of sensory adaptations in three model systems within the bees. Females share a similar ecology and similar functional morphologies are to be expected. Males, engage mainly in mating behavior. A variety of male mating strategies has been described which differ in their spatiotemporal features and in the signals and cues involved, and thus selection pressures. As a consequence, males' sensory systems are more diverse than those of females. In the first part I studied adaptations of the visual system in honeybees. I compared sex and caste-specific eye morphology among 5 species (Apis andreniformis, A. cerana, A. dorsata, A. florea, A. mellifera). I found a strong correlation between body size and eye size in both female castes. Queens have a relatively reduced visual system which is in line with the reduced role of visual perception in their life history. Workers differed in eye size and functional morphology, which corresponds to known foraging differences among species. In males, the eyes are conspicuously enlarged in all species, but a disproportionate enlargement was found in two species (A. dorsata, A. florea). I further demonstrate a correlation between male visual parameters and mating flight time, and propose that light intensities play an important role in the species-specific timing of mating flights. In the second study I investigated eye morphology differences among two phenotypes of drones in the Western honeybee. Besides normal-sized drones, smaller drones are reared in the colony, and suffer from reduced reproductive success. My results suggest that the smaller phenotype does not differ in spatial resolution of its visual system, but suffers from reduced light and contrast sensitivity which may exacerbate the reduction in reproductive success caused by other factors. In the third study I investigated the morphology of the visual system in bumblebees. I explored the association between male eye size and mating behavior and investigated the diversity of compound eye morphology among workers, queens and males in 11 species. I identified adaptations of workers that correlate with distinct foraging differences among species. Bumblebee queens must, in contrast to honeybees, fulfill similar tasks as workers in the first part of their life, and correspondingly visual parameters are similar among both female castes. Enlarged male eyes are found in several subgenera and have evolved several times independently within the genus, which I demonstrate using phylogenetic informed statistics. Males of these species engage in visually guided mating behavior. I find similarities in the functional eye morphology among large-eyed males in four subgenera, suggesting convergent evolution as adaptation to similar visual tasks. In the remaining species, males do not differ significantly from workers in their eye morphology. In the fourth study I investigated the sexual dimorphism of the visual system in a solitary bee species. Males of Eucera berlandi patrol nesting sites and compete for first access to virgin females. Males have enlarged eyes and better spatial resolution in their frontal eye region. In a behavioral study, I tested the effect of target size and speed on male mate catching success. 3-D reconstructions of the chasing flights revealed that angular target size is an important parameter in male chasing behavior. I discuss similarities to other insects that face similar problems in visual target detection. In the fifth study I examined the olfactory system of E. berlandi. Males have extremely long antennae. To investigate the anatomical grounds of this elongation I studied antennal morphology in detail in the periphery and follow the sexual dimorphism into the brain. Functional adaptations were found in males (e.g. longer antennae, a multiplication of olfactory sensilla and receptor neurons, hypertrophied macroglomeruli, a numerical reduction of glomeruli in males and sexually dimorphic investment in higher order processing regions in the brain), which were similar to those observed in honeybee drones. The similarities and differences are discussed in the context of solitary vs. eusocial lifestyle and the corresponding consequences for selection acting on males.}, subject = {Biene}, language = {en} } @article{SchilcherThammStrubeBlossetal.2021, author = {Schilcher, Felix and Thamm, Markus and Strube-Bloss, Martin and Scheiner, Ricarda}, title = {Opposing actions of octopamine and tyramine on honeybee vision}, series = {Biomolecules}, volume = {11}, journal = {Biomolecules}, number = {9}, issn = {2218-273X}, doi = {10.3390/biom11091374}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246214}, year = {2021}, abstract = {The biogenic amines octopamine and tyramine are important neurotransmitters in insects and other protostomes. They play a pivotal role in the sensory responses, learning and memory and social organisation of honeybees. Generally, octopamine and tyramine are believed to fulfil similar roles as their deuterostome counterparts epinephrine and norepinephrine. In some cases opposing functions of both amines have been observed. In this study, we examined the functions of tyramine and octopamine in honeybee responses to light. As a first step, electroretinography was used to analyse the effect of both amines on sensory sensitivity at the photoreceptor level. Here, the maximum receptor response was increased by octopamine and decreased by tyramine. As a second step, phototaxis experiments were performed to quantify the behavioural responses to light following treatment with either amine. Octopamine increased the walking speed towards different light sources while tyramine decreased it. This was independent of locomotor activity. Our results indicate that tyramine and octopamine act as functional opposites in processing responses to light.}, language = {en} }