@phdthesis{Weber2014, author = {Weber, David}, title = {Hey target gene regulation in embryonic stem cells and cardiomyocytes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-101663}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The Notch signaling pathway is crucial for mammalian heart development. It controls cell-fate decisions, coordinates patterning processes and regulates proliferation and differentiation. Critical Notch effectors are Hey bHLH transcription factors (TF) that are expressed in atrial (Hey1) and ventricular (Hey2) cardiomyocytes (CM) and in the developing endocardium (Hey1/2/L). The importance of Hey proteins for cardiac development is demonstrated by knockout (KO) mice, which suffer from lethal cardiac defects, such as ventricular septum defects (VSD), valve defects and cardiomyopathy. Despite this clear functional relevance, little is known about Hey downstream targets in the heart and the molecular mechanism by which they are regulated. Here, I use a cell culture system with inducible Hey1, Hey2 or HeyL expression to study Hey target gene regulation in HEK293 cells, in murine embryonic stem cells (ESC) and in ESC derived CM. In HEK293 cells, I could show that genome wide binding sites largely overlap between all three Hey proteins, but HeyL has many additional binding sites that are not bound by Hey1 or Hey2. Shared binding sites are located close to transcription start sites (TSS) where Hey proteins preferentially bind to canonical E boxes, although more loosely defined modes of binding exist. Additional sites only bound by HeyL are more scattered across the genome. The ability of HeyL to bind these sites depends on the C-terminal part of the protein. Although there are genes which are differently regulated by HeyL, it is unclear whether this regulation results from binding of additional sites by HeyL. Additionally, Hey target gene regulation was studied in ESC and differentiated CM, which are more relevant for the observed cardiac phenotypes. ESC derived CM contract in culture and are positive for typical cardiac markers by qRT PCR and staining. According to these markers differentiation is unaffected by prolonged Hey1 or Hey2 overexpression. Regulated genes are largely redundant between Hey1 and Hey2. These are mainly other TF involved in e.g. developmental processes, apoptosis, cell migration and cell cycle. Many target genes are cell type specifically regulated causing a shift in Hey repression of genes involved in cell migration in ESC to repression of genes involved in cell cycle in CM. The number of Hey binding sites is reduced in CM and HEK293 cells compared to ESC, most likely due to more regions of dense chromatin in differentiated cells. Binding sites are enriched at the proximal promoters of down-regulated genes, compared to up-or non-regulated genes. This indicates that up-regulation primarily results from indirect effects, while down-regulation is the direct results of Hey binding to target promoters. The extent of repression generally correlates with the amount of Hey binding and subsequent recruitment of histone deacetylases (Hdac) to target promoters resulting in histone H3 deacetylation. However, in CM the repressive effect of Hey binding on a subset of genes can be annulled, likely due to binding of cardiac specific activators like Srf, Nkx2-5 and Gata4. These factors seem not to interfere with Hey binding in CM, but they recruit histone acetylases such as p300 that may counteract Hey mediated histone H3 deacetylation. Such a scenario explains differential regulation of Hey target genes between ESC and CM resulting in gene and cell-type specific regulation.}, subject = {Transkriptionsfaktor}, language = {en} } @phdthesis{Dindar2014, author = {Dindar, G{\"u}lcin}, title = {Molecular basis for product-specificity of DOT1 methyltransferases in Trypanosoma brucei}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-102524}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Post-translational histone modifications (PTMs) such as methylation of lysine residues influence chromatin structure and function. PTMs are involved in different cellular processes such as DNA replication, transcription and cell differentiation. Deregulations of PTM patterns are responsible for a variety of human diseases including acute leukemia. DOT1 enzymes are highly conserved histone methyltransferases that are responsible for methylation of lysine 79 on histone H3 (H3K79). Most eukaryotes contain one single DOT1 enzyme, whereas African trypanosomes have two homologues, DOT1A and DOT1B, which methylate H3K76 (H3K76 is homologous to H3K79 in other organisms). DOT1A is essential and mediates mono- and di-methylations, whereas DOT1B additionally catalyzes tri-methylation of H3K76. However, a mechanistic understanding how these different enzymatic activities are achieved is lacking. This thesis exploits the fact that trypanosomes possess two DOT1 enzymes with different catalytic properties to understand the molecular basis for the differential product-specificity of DOT1 enzymes. A trypanosomal nucleosome reconstitution system was established to analyze methyltransferase activity under defined in vitro conditions. Homology modeling allowed the identification of critical residues within and outside the catalytic center that modulate product-specificity. Exchange of these residues transferred the product-specificity from one enzyme to the other and revealed regulatory domains adjacent to the catalytic center. This work provides the first evidence that few specific residues in DOT1 enzymes are crucial to catalyze methyl-state-specific reactions. These results have also consequences for the functional understanding of homologous enzymes in other eukaryotes.}, subject = {Histon-Methyltransferase}, language = {en} } @phdthesis{Xian2014, author = {Xian, Yibo}, title = {Identification of essential genes and novel virulence factors of Neisseria gonorrhoeae by transposon mutagenesis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-102659}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Neisseria gonorrhoeae is a human-specific pathogen that causes gonorrhea. It is defined as a super bacterium by the WHO due to the emergence of gonococci that are resistant to a variety of antibiotics and a rapidly increasing infection incidence. Genome-wide investigation of neisserial gene essentiality and novel virulence factors is urgently required in order to identify new targets for anti-neisserial therapeutics. To identify essential genes and new virulence factors, a high-density mutant library in N. gonorrhoeae MS11 was generated by in vitro transposon mutagenesis. The transposon library harbors more than 100,000 individual mutants, a density that is unprecedented in gonococcal research. Essential genes in N. gonorrhoeae were determined by enumerating frequencies of transposon insertion sites (TIS) with Illumina deep sequencing (Tn-seq). Tn-seq indicated an average distance between adjacent TIS of 25 bp. Statistical analysis unequivocally demonstrated 781 genes that were significantly depleted in TIS and thus are essential for Neisseria survival. A subset of the genes was experimentally verified to comprise essential genes and thus support the outcome of the study. The hereby identified candidate essential genes thus may constitute excellent targets for the development of new antibiotics or vaccines. In a second study, the transposon mutant library was applied in a genome-scale "negative-selection strategy" to identify genes that are involved in low phosphate-dependent invasion (LPDI). LPDI is dependent on the Neisseria porin subtype PorBIA which acts as an epithelial cell invasin in absence of phosphate and is associated with severe pathogenicity in disseminated gonococcal infections (DGI). Tn-seq demonstrated 98 genes, which were involved in adherence to host cells and 43 genes involved in host cell invasion. E.g. the hypothetical protein NGFG_00506, an ABC transporter ATP-binding protein NGFG_01643, as well as NGFG_04218 encoding a homolog of mafI in N. gonorrhoeae FA1090 were experimentally verified as new invasive factors in LPDI. NGFG_01605, a predicted protease, was identified to be a common factor involved in PorBIA, Opa50 and Opa57-mediated neisserial engulfment by the epithelial cells. Thus, this first systematic Tn-seq application in N. gonorrhoeae identified a set of previously unknown N. gonorrhoeae invasive factors which demonstrate molecular mechanisms of DGI.}, subject = {Neisseria gonorrhoeae}, language = {en} } @phdthesis{Classen2014, author = {Claßen, Alice}, title = {Diversity, traits and ecosystem services of pollinators along climate and land use gradients on Mount Kilimanjaro}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-101292}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Since more than two centuries naturalists are fascinated by the profound changes in biodiversity observed along climatic gradients. Although the theories explaining changes in the diversity and the shape of organisms along climatic gradients belong to the foundations of modern ecology, our picture on the spatial patterns and drivers of biodiversity is far from being complete. Ambiguities in theory and data are common and past work has been strongly concentrated on plants and vertebrates. In the last two decades, interest in the fundamental processes structuring diversity along climatic gradients gained new impetus as they are expected to improve our understanding about how ecosystems will respond to global environmental changes. Global temperatures are rising faster than ever before; natural habitats are transformed into agricultural land and existing land use systems get more and more intensified to meet the demands of growing human populations. The fundamental shifts in the abiotic and biotic environment are proclaimed to affect ecosystems all over the world; however, precise predictions about how ecosystems respond to global changes are still lacking. We investigated diversity, traits and ecosystem services of wild bees along climate and land use gradients on Mount Kilimanjaro (Tanzania, East Africa). Wild bees play a major role in ecosystems, as they contribute to the reproduction and performance of wild and crop plants. Their responsiveness to environmental changes is therefore of high ecological and economic importance. Temperature and energy resources have often been suggested to be the main determinants of global and local species richness, but the mechanisms behind remain poorly understood. In the study described in chapter II we analyzed species richness patterns of wild bees along climate and land use gradients on Mount Kilimanjaro and disentangled the factors explaining most of the changes in bee richness. We found that floral resources had a weak but significant effect on pollinator abundance, which in turn was positively related to species richness. However, temperature was the strongest predictor of species richness, affecting species richness both directly and indirectly by positively influencing bee abundances. We observed higher levels of bee-flower-interactions at higher temperatures, independently of flower and bee abundances. This suggests that temperature restricts species richness by constraining the exploitation of resources by ectotherms. Current land use did not negatively affect species richness. We conclude that the richness of bees is explained by both temperature and resource availability, whereas temperature plays the dominant role as it limits the access of ectotherms to floral resources and may accelerate ecological and evolutionary processes that drive the maintenance and origination of diversity. Not only species numbers, but also morphological traits like body size are expected to be shaped by both physiological and energetic constraints along elevational gradients. Paradoxically, Bergmann´s rule predicts increases of body sizes in cooler climates resulting from physiological constraints, while species-energy theory suggests declines in the mean body size of species caused by increased extinction probabilities for large-bodied species in low-energy habitats. In chapter III we confronted this ambiguity with field data by studying community-wide body size variation of wild bees on Mt. Kilimanjaro. We found that along a 3680 m elevational gradient bee individuals became on average larger within species, while large species were increasingly absent from high-elevational communities. This demonstrates, on the one hand, how well-established, but apparently contrasting ecological theories can be merged through the parallel consideration of different levels of biological organization. On the other hand it signals that the extinction risk in the course of environmental change is not equally distributed among species within a community. Land use intensification is known to threaten biodiversity, but the consequences for ecosystem services are still a matter of debate. In chapter IV, we experimentally tested the single and combined contributions of pest predators and pollinators to coffee production along a land use intensification gradient on Mount Kilimanjaro. We found that pest predation increased fruit set by on average 9\%, while pollination increased fruit weight of coffee by on average 7.4\%. Land use had no significant effect on both ecosystem services. However, we found that in coffee plantations with most intensified land use, pollination services were virtually exclusively provided by the honey bee (Apis mellifera). The reliance on a single pollinator species is risky, as possible declines of that species may directly lower pollination services, resulting in yield losses. In contrast, pollination services in structurally complex homegardens were found to be provided by a diverse pollinator community, increasing the stability of pollination services in a long term. We showed that on Mount Kilimanjaro pollinator communities changed along elevational gradients in terms of species richness (chapter II) and trait composition (chapter III). Temperature and the temperature-mediated accessibility of resources were identified as important predictors of these patterns, which contributes to our fundamental understanding about the factors that shape ectothermic insect communities along climatic gradients. The strong temperature-dependence of pollinators suggests that temperature shifts in the course of global change are likely to affect pollinator communities. Pollinators might either profit from rising temperatures, or shift to higher elevations, which could result in related biotic attrition in the lowland with consequences for the provision of ecosystem services in cropping systems. Up to now, land use intensification had no significant impact on the diversity of pollinator communities and their ecosystem services. Pollinators might profit from the strong landscape heterogeneity in the region and from the amount of flower resources in the understory of cropping systems. However,progressing homogenization of the landscape and the pronounced application of pesticides could result in reduced diversity and dominance of single species, as we already found in sun coffee plantations. Such shifts in community compositions could threaten the stability of ecosystem services within cropping and natural systems in a long term.}, subject = {Kilimandscharo}, language = {en} } @phdthesis{LuiblneeHermann2014, author = {Luibl [n{\´e}e Hermann], Christiane}, title = {The role of the neuropeptides NPF, sNPF, ITP and PDF in the circadian clock of Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-93796}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Organisms have evolved endogenous clocks which allow them to organize their behavior, metabolism and physiology according to the periodically changing environmental conditions on earth. Biological rhythms that are synchronized to daily changes in environment are governed by the so-called circadian clock. Since decades, chronobiologists have been investigating circadian clocks in various model organisms including the fruitfly Drosophila melanogaster, which was used in the present thesis. Anatomically, the circadian clock of the fruitfly consists of about 150 neurons in the lateral and dorsal protocerebrum, which are characterized by their position, morphology and neurochemistry. Some of these neurons had been previously shown to contain either one or several neuropeptides, which are thought to be the main signaling molecules used by the clock. The best investigated of these neuropeptides is the Pigment Dispersing Factor (PDF), which had been shown to constitute a synchronizing signal between clock neurons as well as an output factor of the clock. In collaboration with various coworkers, I investigated the roles of three other clock expressed neuropeptides for the generation of behavioral rhythms and the partly published, partly unpublished data are presented in this thesis. Thereby, I focused on the Neuropeptide F (NPF), short Neuropeptide F (sNPF) and the Ion Transport Peptide (ITP). We show that part of the neuropeptide composition within the clock network seems to be conserved among different Drosophila species. However, the PDF expression pattern in certain neurons varied in species deriving from lower latitudes compared to higher latitudes. Together with findings on the behavioral level provided by other people, these data suggest that different species may have altered certain properties of their clocks - like the neuropeptide expression in certain neurons - in order to adapt their behavior to different habitats. We then investigated locomotor rhythms in Drosophila melanogaster flies, in which neuropeptide circuits were genetically manipulated either by cell ablation or RNA interference (RNAi). We found that none of the investigated neuropeptides seems to be of equal importance for circadian locomotor rhythms as PDF. PDF had been previously shown to be necessary for rhythm maintenance in constant darkness (DD) as well as for the generation of morning (M) activity and for the right phasing of the evening (E) activity in entrained conditions. We now demonstrate that NPF and ITP seem to promote E activity in entrained conditions, but are clearly not the only factors doing so. In addition, ITP seems to reduce nighttime activity. Further, ITP and possibly also sNPF constitute weak period shortening components in DD, thereby opposing the effect of PDF. However, neither NPF or ITP, nor sNPF seem to be necessary in the clock neurons for maintaining rhythmicity in DD. It had been previously suggested that PDF is released rhythmically from the dorsal projection terminals. Now we discovered a rhythm in ITP immunostaining in the dorsal projection terminals of the ITP+ clock neurons in LD, suggesting a rhythm in peptide release also in the case of ITP. Rhythmic release of both ITP and PDF seems to be important to maintain rhythmic behavior in DD, since constantly high levels of PDF and ITP in the dorsal protocerebrum lead to behavioral arrhythmicity. Applying live-imaging techniques we further demonstrate that sNPF acts in an inhibitory way on few clock neurons, including some that are also activated by PDF, suggesting that it acts as signaling molecule within the clock network and has opposing effects to PDF. NPF did only evoke very little inhibitory responses in very few clock neurons, suggesting that it might rather be used as a clock output factor. We were not able to apply the same live-imaging approach for the investigation of the clock neuron responsiveness to ITP, but overexpression of ITP with various driver lines showed that the peptide most likely acts mainly in clock output pathways rather than inter-clock neuron communication. Taking together, I conclude that all investigated peptides contribute to the control of locomotor rhythms in the fruitfly Drosophila melanogaster. However, this control is in most aspects dominated by the actions of PDF and rather only fine-tuned or complemented by the other peptides. I assume that there is a high complexity in spatial and temporal action of the different neuropeptides in order to ensure correct signal processing within the clock network as well as clock output.}, subject = {Taufliege}, language = {en} }