@phdthesis{Vollmar2008, author = {Vollmar, Friederike Lara Veronika}, title = {Analyse der Kernh{\"u}llenbildung am Modellsystem Xenopus laevis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29298}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Die Kernh{\"u}lle ist eine hoch spezialisierte Membran, die den eukaryotischen Zellkern umgibt. Sie besteht aus der {\"a}ußeren und der inneren Kernmembran, die {\"u}ber die Kernporenkomplexe miteinander verbunden werden. Die Kernh{\"u}lle reguliert nicht nur den Transport von Makromolek{\"u}len zwischen dem Nukleoplasma und dem Zytoplasma, sie dient auch der Verankerung des Chromatins und des Zytoskeletts. Durch diese Interaktionen hilft die Kernh{\"u}lle, den Zellkern innerhalb der Zelle und die Chromosomen innerhalb des Zellkerns zu positionieren, und reguliert dadurch die Expression bestimmter Gene. In h{\"o}heren Eukaryoten durchlaufen sowohl die Kernh{\"u}lle, als auch die Kernporenkomplexe w{\"a}hrend der Zellteilung strukturelle Ver{\"a}nderungen. Zu Beginn der Mitose werden sie abgebaut, um sich am Ende der Mitose in den Tochterzellen erneut zu bilden. Die molekularen Mechanismen, die zum Wiederaufbau der Kernh{\"u}lle f{\"u}hren, sind kaum gekl{\"a}rt. Ein geeignetes System, um bestimmte Ereignisse bei der Kernh{\"u}llenbildung zu untersuchen, liefert das zellfreie System aus Xenopus Eiern und Spermienchromatin (Lohka 1998). Es konnte bereits fr{\"u}her gezeigt werden, dass es im Eiextrakt von Xenopus laevis mindestens zwei verschiedene Vesikelpopulationen gibt, die zur Bildung der Kernh{\"u}lle beitragen. Eine der Vesikelpopulationen bindet an Chromatin, fusioniert dort und bildet eine Doppelmembran. Die andere Vesikelpopulation bindet an die bereits vorhandene Doppelmembran und sorgt f{\"u}r die Ausbildung der Kernporenkomplexe. Ziel dieser Arbeit war es, diese beiden Membranfraktionen zu isolieren und zu charakterisieren, wobei das Hauptinteresse in der porenbildenden Membranfraktion lag. Durch Zentrifugation {\"u}ber einen diskontinuierlichen Zuckergradienten konnten die Membranvesikel in zwei verschiedene Vesikelfraktionen aufgetrennt werden. Eine Membranfraktion konnte aus der 40\%igen Zuckerfraktion („40\% Membranfraktion") isoliert werden, die andere aus der 30\%igen Zuckerfraktion („30\% Membranfraktion"). Die verschiedenen Membranfraktionen wurden zu in vitro Kernen gegeben, in denen die Kernporen durch vorausgegangene Bildung von Annulate Lamellae depletiert worden waren. Nach Zugabe der 30\% Membranfraktion konnte die Bildung von funktionalen Kernporen beobachtet werden. Im Gegensatz dazu zeigte die 40\% Membranfraktion keine porenbildenden Eigenschaften. Unter Verwendung eines vereinfachten Systems, bestehend aus Zytosol, Spermienchromatin und den Membranen, wurde gezeigt, dass die 40\% Membranfraktion an Chromatin bindet und ausreichend ist, um eine kontinuierliche Doppelmembran ohne Kernporen zu bilden. Die 30\% Membranfraktion besitzt keine Chromatinbindungseigenschaften und wird aktiv entlang von Mikrotubuli zu den porenlosen Kernen transportiert. Dort interagiert sie mit der chromatingebundenen 40\% Membranfraktion und induziert die Porenbildung. Nach dem Vergleich der Proteinzusammensetzung der beiden Membranfraktionen, konnte das Major Vault Protein (MVP) nur in der porenbildenden Membranfraktion gefunden werden. MVP ist die Hauptstrukturkomponente der Vault-Komplexe, einem Ribonukleo-proteinpartikel, der in den meisten eukaryotischen Zellen vorhanden ist (Kedersha et al., 1991). Bemerkenswerterweise wird {\"u}ber die Funktion der Vault-Komplexe, trotz ihrer {\"u}biquit{\"a}ren Expression und ihrem Vorkommen in fast allen eukaryotischen Zellen, immer noch diskutiert. Um mehr {\"u}ber die Funktion und die Lokalisation der Vaults/MVP zu lernen, wurden die Vaults in Anlehnung an die Methode von Kedersha und Rome (1986) aus Xenopus Eiern isoliert. Zus{\"a}tzlich wurde rekombinantes Xenopus MVP hergestellt, das unter anderem f{\"u}r die Produktion von Antik{\"o}rpern in Meerschweinchen verwendet wurde. Um herauszufinden, ob die Anwesenheit von MVP in der 30\% Membranfraktion in direktem Zusammenhang mit deren porenbildender Eigenschaft steht, wurden gereinigte Vault-Komplexe oder rekombinantes MVP, das alleine ausreichend ist, um in sich zu den charakteristischen Vault-Strukturen zusammenzulagern, zu porenlosen Kernen gegeben. Sowohl gereinigte Vault-Komplexe, als auch rekombinantes MVP waren in der Lage in den porenlosen Kernen die Bildung von funktionalen Kernporen zu induzieren. Untersuchungen zur Lokalisation von MVP zeigten, dass MVP teilweise an der Kernh{\"u}lle und den Kernporenkomplexen lokalisiert, w{\"a}hrend der Großteil an MVP zytoplasmatisch vorliegt. Dies sind die ersten Daten, die Vaults/MVP mit der Kernporenbildung in Verbindung bringen. Deshalb bietet diese Arbeit die Grundlage, um diese unerwartete Rolle der Vaults in Zukunft genauer zu charakterisieren.}, subject = {Kernh{\"u}lle}, language = {de} }