@article{PietroGarciaHartmannReisslandetal.2022, author = {Pietro-Garcia, Christian and Hartmann, Oliver and Reissland, Michaela and Fischer, Thomas and Maier, Carina R. and Rosenfeldt, Mathias and Sch{\"u}lein-V{\"o}lk, Christina and Klann, Kevin and Kalb, Reinhard and Dikic, Ivan and M{\"u}nch, Christian and Diefenbacher, Markus E.}, title = {Inhibition of USP28 overcomes Cisplatin-resistance of squamous tumors by suppression of the Fanconi anemia pathway}, series = {Cell Death and Differentiation}, volume = {29}, journal = {Cell Death and Differentiation}, number = {3}, issn = {1476-5403}, doi = {10.1038/s41418-021-00875-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-273014}, pages = {568-584}, year = {2022}, abstract = {Squamous cell carcinomas (SCC) frequently have an exceptionally high mutational burden. As consequence, they rapidly develop resistance to platinum-based chemotherapy and overall survival is limited. Novel therapeutic strategies are therefore urgently required. SCC express ∆Np63, which regulates the Fanconi Anemia (FA) DNA-damage response in cancer cells, thereby contributing to chemotherapy-resistance. Here we report that the deubiquitylase USP28 is recruited to sites of DNA damage in cisplatin-treated cells. ATR phosphorylates USP28 and increases its enzymatic activity. This phosphorylation event is required to positively regulate the DNA damage repair in SCC by stabilizing ∆Np63. Knock-down or inhibition of USP28 by a specific inhibitor weakens the ability of SCC to cope with DNA damage during platin-based chemotherapy. Hence, our study presents a novel mechanism by which ∆Np63 expressing SCC can be targeted to overcome chemotherapy resistance. Limited treatment options and low response rates to chemotherapy are particularly common in patients with squamous cancer. The SCC specific transcription factor ∆Np63 enhances the expression of Fanconi Anemia genes, thereby contributing to recombinational DNA repair and Cisplatin resistance. Targeting the USP28-∆Np63 axis in SCC tones down this DNA damage response pathways, thereby sensitizing SCC cells to cisplatin treatment.}, language = {en} } @phdthesis{PrietoGarcia2022, author = {Prieto Garc{\´i}a, Cristian}, title = {USP28 regulates Squamous cell oncogenesis and DNA repair via ΔNp63 deubiquitination}, doi = {10.25972/OPUS-27033}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270332}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {∆Np63 is a master regulator of squamous cell identity and regulates several signaling pathways that crucially contribute to the development of squamous cell carcinoma (SCC) tumors. Its contribution to coordinating the expression of genes involved in oncogenesis, epithelial identity, DNA repair, and genome stability has been extensively studied and characterized. For SCC, the expression of ∆Np63 is an essential requirement to maintain the malignant phenotype. Additionally, ∆Np63 functionally contributes to the development of cancer resistance toward therapies inducing DNA damage. SCC patients are currently treated with the same conventional Cisplatin therapy as they would have been treated 30 years ago. In contrast to patients with other tumor entities, the survival of SCC patients is limited, and the efficacy of the current therapies is rather low. Considering the rising incidences of these tumor entities, the development of novel SCC therapies is urgently required. Targeting ∆Np63, the transcription factor, is a potential alternative to improve the therapeutic response and clinical outcomes of SCC patients. However, ∆Np63 is considered "undruggable." As is commonly observed in transcription factors, ∆Np63 does not provide any suitable domains for the binding of small molecule inhibitors. ∆Np63 regulates a plethora of different pathways and cellular processes, making it difficult to counteract its function by targeting downstream effectors. As ∆Np63 is strongly regulated by the ubiquitin-proteasome system (UPS), the development of deubiquitinating enzyme inhibitors has emerged as a promising therapeutic strategy to target ∆Np63 in SCC treatment. This work involved identifying the first deubiquitinating enzyme that regulates ∆Np63 protein stability. Stateof-the-art SCC models were used to prove that USP28 deubiquitinates ∆Np63, regulates its protein stability, and affects squamous transcriptional profiles in vivo and ex vivo. Accordingly, SCC depends on USP28 to maintain essential levels of ∆Np63 protein abundance in tumor formation and maintenance. For the first time, ∆Np63, the transcription factor, was targeted in vivo using a small molecule inhibitor targeting the activity of USP28. The pharmacological inhibition of USP28 was sufficient to hinder the growth of SCC tumors in preclinical mouse models. Finally, this work demonstrated that the combination of Cisplatin with USP28 inhibitors as a novel therapeutic alternative could expand the limited available portfolio of SCC therapeutics. Collectively, the data presented within this dissertation demonstrates that the inhibition of USP28 in SCC decreases ∆Np63 protein abundance, thus downregulating the Fanconi anemia (FA) pathway and recombinational DNA repair. Accordingly, USP28 inhibition reduces the DNA damage response, thereby sensitizing SCC tumors to DNA damage therapies, such as Cisplatin.}, language = {en} } @article{PrietoGarciaHartmannReisslandetal.2022, author = {Prieto-Garcia, Cristian and Hartmann, Oliver and Reissland, Michaela and Braun, Fabian and Bozkurt, S{\"u}leyman and Pahor, Nikolett and Fuss, Carmina and Schirbel, Andreas and Sch{\"u}lein-V{\"o}lk, Christina and Buchberger, Alexander and Calzado Canale, Marco A. and Rosenfeldt, Mathias and Dikic, Ivan and M{\"u}nch, Christian and Diefenbacher, Markus E.}, title = {USP28 enables oncogenic transformation of respiratory cells, and its inhibition potentiates molecular therapy targeting mutant EGFR, BRAF and PI3K}, series = {Molecular Oncology}, volume = {16}, journal = {Molecular Oncology}, number = {17}, doi = {10.1002/1878-0261.13217}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312777}, pages = {3082-3106}, year = {2022}, abstract = {Oncogenic transformation of lung epithelial cells is a multistep process, frequently starting with the inactivation of tumour suppressors and subsequent development of activating mutations in proto-oncogenes, such as members of the PI3K or MAPK families. Cells undergoing transformation have to adjust to changes, including altered metabolic requirements. This is achieved, in part, by modulating the protein abundance of transcription factors. Here, we report that the ubiquitin carboxyl-terminal hydrolase 28 (USP28) enables oncogenic reprogramming by regulating the protein abundance of proto-oncogenes such as c-JUN, c-MYC, NOTCH and ∆NP63 at early stages of malignant transformation. USP28 levels are increased in cancer compared with in normal cells due to a feed-forward loop, driven by increased amounts of oncogenic transcription factors such as c-MYC and c-JUN. Irrespective of oncogenic driver, interference with USP28 abundance or activity suppresses growth and survival of transformed lung cells. Furthermore, inhibition of USP28 via a small-molecule inhibitor resets the proteome of transformed cells towards a 'premalignant' state, and its inhibition synergizes with clinically established compounds used to target EGFR\(^{L858R}\)-, BRAF\(^{V600E}\)- or PI3K\(^{H1047R}\)-driven tumour cells. Targeting USP28 protein abundance at an early stage via inhibition of its activity is therefore a feasible strategy for the treatment of early-stage lung tumours, and the observed synergism with current standard-of-care inhibitors holds the potential for improved targeting of established tumours.}, language = {en} }