@article{BeckHovhanyanMenegazzietal.2018, author = {Beck, Katherina and Hovhanyan, Anna and Menegazzi, Pamela and Helfrich-F{\"o}rster, Charlotte and Raabe, Thomas}, title = {Drosophila RSK Influences the Pace of the Circadian Clock by Negative Regulation of Protein Kinase Shaggy Activity}, series = {Frontiers in Molecular Neuroscience}, volume = {11}, journal = {Frontiers in Molecular Neuroscience}, number = {122}, issn = {1662-5099}, doi = {10.3389/fnmol.2018.00122}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196034}, year = {2018}, abstract = {Endogenous molecular circadian clocks drive daily rhythmic changes at the cellular, physiological, and behavioral level for adaptation to and anticipation of environmental signals. The core molecular system consists of autoregulatory feedback loops, where clock proteins inhibit their own transcription. A complex and not fully understood interplay of regulatory proteins influences activity, localization and stability of clock proteins to set the pace of the clock. This study focuses on the molecular function of Ribosomal S6 Kinase (RSK) in the Drosophila melanogaster circadian clock. Mutations in the human rsk2 gene cause Coffin-Lowry syndrome, which is associated with severe mental disabilities. Knock-out studies with Drosophila ortholog rsk uncovered functions in synaptic processes, axonal transport and adult behavior including associative learning and circadian activity. However, the molecular targets of RSK remain elusive. Our experiments provide evidence that RSK acts in the key pace maker neurons as a negative regulator of Shaggy (SGG) kinase activity, which in turn determines timely nuclear entry of the clock proteins Period and Timeless to close the negative feedback loop. Phosphorylation of serine 9 in SGG is mediated by the C-terminal kinase domain of RSK, which is in agreement with previous genetic studies of RSK in the circadian clock but argues against the prevailing view that only the N-terminal kinase domain of RSK proteins carries the effector function. Our data provide a mechanistic explanation how RSK influences the molecular clock and imply SGG S9 phosphorylation by RSK and other kinases as a convergence point for diverse cellular and external stimuli.}, language = {en} } @phdthesis{Fischer2015, author = {Fischer, Robin}, title = {Generating useful tools for future studies in the center of the circadian clock - defined knockout mutants for PERIOD and TIMELESS}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119141}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {To unravel the role of single genes underlying certain biological processes, scientists often use amorphic or hypomorphic alleles. In the past, such mutants were often created by chance. Enormous approaches with many animals and massive screening effort for striking phenotypes were necessary to find a needle in the haystack. Therefore at the beginning chemical mutagens or radiation were used to induce mutations in the genome. Later P-element insertions and inaccurate jump-outs enabled the advantage of potential larger deletions or inversions. The mutations were characterized and subsequently kept in smaller populations in the laboratories. Thus additional mutations with unknown background effects could accumulate. The precision of the knockout through homologous recombination and the additional advantage of being able to generate many useful rescue constructs that can be easily reintegrated into the target locus made us trying an ends-out targeting procedure of the two core clock genes period and timeless in Drosophila melanogaster. Instead of the endogenous region, a small fragment of approximately 100 base pairs remains including an attP-site that can be used as integration site for in vitro created rescue constructs. After a successful ends-out targeting procedure, the locus will be restored with e.g. flies expressing the endogenous gene under the native promoter at the original locus coupled to a fluorescence tag or expressing luciferase. We also linked this project to other research interests of our work group, like the epigenetic related ADAR-editing project of the Timeless protein, a promising newly discovered feature of time point specific timeless mRNA modification after transcription with yet unexplored consequences. The editing position within the Timeless protein is likewise interesting and not only noticed for the first time. This will render new insights into the otherwise not-satisfying investigation and quest for functional important sequences of the Timeless protein, which anyway shows less homology to other yet characterized proteins. Last but not least, we bothered with the question of the role of Shaggy on the circadian clock. The impact of an overexpression or downregulation of Shaggy on the pace of the clock is obvious and often described. The influence of Shaggy on Period and Timeless was also shown, but for the latter it is still controversially discussed. Some are talking of a Cryptochrome stabilization effect and rhythmic animals in constant light due to Shaggy overexpression, others show a decrease of Cryptochrome levels under these conditions. Also the constant light rhythmicity of the flies, as it was published, could not be repeated so far. We were able to expose the conditions behind the Cryptochrome stabilization and discuss possibilities for the phenomenon of rhythmicity under constant light due to Shaggy overexpression.}, subject = {Biologische Uhr}, language = {en} }