@article{AntonRoessler2021, author = {Anton, Sylvia and R{\"o}ssler, Wolfgang}, title = {Plasticity and modulation of olfactory circuits in insects}, series = {Cell and Tissue Research}, volume = {383}, journal = {Cell and Tissue Research}, issn = {0302-766X}, doi = {10.1007/s00441-020-03329-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235820}, pages = {149-164}, year = {2021}, abstract = {Olfactory circuits change structurally and physiologically during development and adult life. This allows insects to respond to olfactory cues in an appropriate and adaptive way according to their physiological and behavioral state, and to adapt to their specific abiotic and biotic natural environment. We highlight here findings on olfactory plasticity and modulation in various model and non-model insects with an emphasis on moths and social Hymenoptera. Different categories of plasticity occur in the olfactory systems of insects. One type relates to the reproductive or feeding state, as well as to adult age. Another type of plasticity is context-dependent and includes influences of the immediate sensory and abiotic environment, but also environmental conditions during postembryonic development, periods of adult behavioral maturation, and short- and long-term sensory experience. Finally, plasticity in olfactory circuits is linked to associative learning and memory formation. The vast majority of the available literature summarized here deals with plasticity in primary and secondary olfactory brain centers, but also peripheral modulation is treated. The described molecular, physiological, and structural neuronal changes occur under the influence of neuromodulators such as biogenic amines, neuropeptides, and hormones, but the mechanisms through which they act are only beginning to be analyzed.}, language = {en} } @article{BrillMeyerRoessler2015, author = {Brill, Martin F. and Meyer, Anneke and Roessler, Wolfgang}, title = {It takes two—coincidence coding within the dual olfactory pathway of the honeybee}, series = {Frontiers in Physiology}, volume = {6}, journal = {Frontiers in Physiology}, number = {208}, doi = {10.3389/fphys.2015.00208}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126179}, year = {2015}, abstract = {To rapidly process biologically relevant stimuli, sensory systems have developed a broad variety of coding mechanisms like parallel processing and coincidence detection. Parallel processing (e.g., in the visual system), increases both computational capacity and processing speed by simultaneously coding different aspects of the same stimulus. Coincidence detection is an efficient way to integrate information from different sources. Coincidence has been shown to promote associative learning and memory or stimulus feature detection (e.g., in auditory delay lines). Within the dual olfactory pathway of the honeybee both of these mechanisms might be implemented by uniglomerular projection neurons (PNs) that transfer information from the primary olfactory centers, the antennal lobe (AL), to a multimodal integration center, the mushroom body (MB). PNs from anatomically distinct tracts respond to the same stimulus space, but have different physiological properties, characteristics that are prerequisites for parallel processing of different stimulus aspects. However, the PN pathways also display mirror-imaged like anatomical trajectories that resemble neuronal coincidence detectors as known from auditory delay lines. To investigate temporal processing of olfactory information, we recorded PN odor responses simultaneously from both tracts and measured coincident activity of PNs within and between tracts. Our results show that coincidence levels are different within each of the two tracts. Coincidence also occurs between tracts, but to a minor extent compared to coincidence within tracts. Taken together our findings support the relevance of spike timing in coding of olfactory information (temporal code).}, language = {en} } @article{GrobHeinigGruebeletal.2021, author = {Grob, Robin and Heinig, Niklas and Gr{\"u}bel, Kornelia and R{\"o}ssler, Wolfgang and Fleischmann, Pauline N.}, title = {Sex-specific and caste-specific brain adaptations related to spatial orientation in Cataglyphis ants}, series = {Journal of Comparative Neurology}, volume = {529}, journal = {Journal of Comparative Neurology}, number = {18}, doi = {10.1002/cne.25221}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257299}, pages = {3882-3892}, year = {2021}, abstract = {Cataglyphis desert ants are charismatic central place foragers. After long-ranging foraging trips, individual workers navigate back to their nest relying mostly on visual cues. The reproductive caste faces other orientation challenges, i.e. mate finding and colony foundation. Here we compare brain structures involved in spatial orientation of Cataglyphis nodus males, gynes, and foragers by quantifying relative neuropil volumes associated with two visual pathways, and numbers and volumes of antennal lobe (AL) olfactory glomeruli. Furthermore, we determined absolute numbers of synaptic complexes in visual and olfactory regions of the mushroom bodies (MB) and a major relay station of the sky-compass pathway to the central complex (CX). Both female castes possess enlarged brain centers for sensory integration, learning, and memory, reflected in voluminous MBs containing about twice the numbers of synaptic complexes compared with males. Overall, male brains are smaller compared with both female castes, but the relative volumes of the optic lobes and CX are enlarged indicating the importance of visual guidance during innate behaviors. Male ALs contain greatly enlarged glomeruli, presumably involved in sex-pheromone detection. Adaptations at both the neuropil and synaptic levels clearly reflect differences in sex-specific and caste-specific demands for sensory processing and behavioral plasticity underlying spatial orientation.}, language = {en} } @phdthesis{Kelber2009, author = {Kelber, Christina}, title = {The olfactory system of leafcutting ants: neuroanatomy and the correlation to social organization}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-47769}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {In leaf-cutting ants (genera Atta and Acromyrmex), the worker caste exhibits a pronounced size-polymorphism, and division of labor is largely dependent on worker size (alloethism). Behavioral studies have shown a rich diversity of olfactory-guided behaviors, and the olfactory system seems to be highly developed and very sensitive. To allow fine-tuned behavioral responses to different tasks, adaptations within the olfactory system of different sized workers are expected. In a recent study, two different phenotypes of the antennal lobe of Atta vollenweideri workers were found: MG- and RG-phenotype (with and without a macroglomerulus, MG). The existence of the macroglomerulus is correlated to the body size of workers, with small workers showing the RG-phenotype and large workers showing the MG-phenotype. In the MG, the information about the releaser component of the trail-pheromone is processed. In the first part of my PhD-project, I focus on quantifying behavioral differences between different sized workers in Atta vollenweideri. The study analyzes the trail following behavior; which can be generally performed by all workers. An artificial trail consisting of the releaser component of the trail-pheromone in decreasing concentration was used to test the trail-following performance of individual workers. The trail-following performance of the polymorphic workers is depended of the existence of the MG in the antennal lobe. Workers possessing the MG-phenotype were significantly better in following a decreasing trail then workers showing the RG-phenotype. In the second part I address the question if there are more structural differences, besides the MG, in the olfactory system of different sized workers. Therefore I analyze whether the glomerular numbers are related to worker size. The antennal lobes of small workers contain ~390 glomeruli (low-number; LN-phenotype), and in large workers I found a substantially higher number of ~440 glomeruli (high-number; HN-phenotype). All LN-phenotype workers and some of the small HN-phenotype workers do not possess an MG (LN-RG-phenotype and HN-RG-phenotype) at all, whereas the remaining majority of HN-phenotype workers do possess an MG (HN-MG-phenotype). Mass-stainings of antennal olfactory receptor neurons revealed that the sensory tracts divide the antennal lobe into six clusters of glomeruli (T1-T6). In the T4-cluster ~50 glomeruli are missing in the LN-phenotype workers. Selective staining of single sensilla and their associated receptor neurons showed that T4-glomeruli are innervated by receptor neurons from the main type of olfactory sensilla, the Sensilla trichodea curvata which are also projecting to glomeruli in all other clusters. The other type of olfactory sensilla, the Sensilla basiconica, exclusively innervates T6-glomeruli. Quantitative analyses revealed a correlation between the number of Sensilla basiconica and the volume of T6 glomeruli in different sized workers. The results of both behavioral and neuroanatomical studies in Atta vollenweideri suggest that developmental plasticity of antennal-lobe phenotypes promotes differences in olfactory-guided behavior which may underlie task specialization within ant colonies. The last part of my project focuses on the evolutionary origin of the macroglomerulus and the number of glomeruli in the antennal lobe. I compared the number, volumes and position of the glomeruli of the antennal lobe of 25 different species from all three major Attini groups (lower, higher and leaf-cutting Attini). The antennal lobes of all investigated Attini comprise a high number of glomeruli (257-630). The highest number was found in Apterostigma cf. mayri. This species is at a basal position within the Attini phylogeny, and a high number of glomeruli might have been advantageous in the evolution of the advanced olfactory systems of this Taxa. The macroglomerulus can be found in all investigated leaf-cutting Attini, but in none of the lower and higher Attini species. It is found only in large workers, and is located close to the entrance of the antennal nerve in all investigated species. The results indicate that the presence of a macroglomerulus in large workers of leaf-cutting Attini is a derived overexpression of a trait in the polymorphic leaf-cutting species. It presumably represents an olfactory adaptation to elaborate foraging and mass recruitment systems, and adds to the complexity of division of labor and social organization known for this group.}, subject = {Gehirn}, language = {en} } @article{RoesslerBrill2013, author = {R{\"o}ssler, Wolfgang and Brill, Martin F.}, title = {Parallel processing in the honeybee olfactory pathway: structure, function, and evolution}, series = {Journal of Comparative Physiology A}, volume = {199}, journal = {Journal of Comparative Physiology A}, doi = {10.1007/s00359-013-0821-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132548}, pages = {981-996}, year = {2013}, abstract = {Animals face highly complex and dynamic olfactory stimuli in their natural environments, which require fast and reliable olfactory processing. Parallel processing is a common principle of sensory systems supporting this task, for example in visual and auditory systems, but its role in olfaction remained unclear. Studies in the honeybee focused on a dual olfactory pathway. Two sets of projection neurons connect glomeruli in two antennal-lobe hemilobes via lateral and medial tracts in opposite sequence with the mushroom bodies and lateral horn. Comparative studies suggest that this dual-tract circuit represents a unique adaptation in Hymenoptera. Imaging studies indicate that glomeruli in both hemilobes receive redundant sensory input. Recent simultaneous multi-unit recordings from projection neurons of both tracts revealed widely overlapping response profiles strongly indicating parallel olfactory processing. Whereas lateral-tract neurons respond fast with broad (generalistic) profiles, medial-tract neurons are odorant specific and respond slower. In analogy to "what-" and "where" subsystems in visual pathways, this suggests two parallel olfactory subsystems providing "what-" (quality) and "when" (temporal) information. Temporal response properties may support across-tract coincidence coding in higher centers. Parallel olfactory processing likely enhances perception of complex odorant mixtures to decode the diverse and dynamic olfactory world of a social insect.}, language = {en} } @phdthesis{Stieb2011, author = {Stieb, Sara Mae}, title = {Synaptic plasticity in visual and olfactory brain centers of the desert ant Cataglyphis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85584}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {W{\"u}stenameisen der Gattung Cataglyphis wurden zu Modellsystemen bei der Erforschung der Navigationsmechanismen der Insekten. Ein altersabh{\"a}ngiger Polyethismus trennt deren Kolonien in Innendienst-Arbeiterinnen und kurzlebige lichtausgesetzte Fourageure. Nachdem die Ameisen in strukturlosem oder strukturiertem Gel{\"a}nde bis zu mehrere hundert Meter weite Distanzen zur{\"u}ckgelegt haben, k{\"o}nnen sie pr{\"a}zise zu ihrer oft unauff{\"a}lligen Nest{\"o}ffnung zur{\"u}ckzukehren. Um diese enorme Navigationsleistung zu vollbringen, bedienen sich die Ameisen der sogenannten Pfadintegration, welche die Informationen aus einem Polarisationskompass und einem Entfernungsmesser verrechnet; des Weiteren orientieren sie sich an Landmarken und nutzen olfaktorische Signale. Im Fokus dieser Arbeit steht C. fortis, welche in Salzpfannen des westlichen Nordafrikas endemisch ist - einem Gebiet, welches vollst{\"a}ndig von anderen Cataglyphis Arten gemieden wird. Die Tatsache, dass Cataglyphis eine hohe Verhaltensflexibilit{\"a}t aufweist, welche mit sich drastisch {\"a}ndernden sensorischen Anforderungen verbunden ist, macht diese Ameisen zu besonders interessanten Studienobjekten bei der Erforschung synaptischer Plastizit{\"a}t visueller und olfaktorischer Gehirnzentren. Diese Arbeit fokussiert auf plastische {\"A}nderungen in den Pilzk{\"o}rpern (PK) - sensorischen Integrationszentren, die mutmaßlich an Lern- und Erinnerungsprozessen, und auch vermutlich am Prozess des Landmarkenlernens beteiligt sind - und auf plastische {\"A}nderungen in den synaptischen Komplexen des Lateralen Akzessorischen Lobus (LAL) - einer bekannten Relaisstation in der Polarisations-Leitungsbahn. Um die strukturelle synaptische Plastizit{\"a}t der PK in C. fortis zu quantifizieren, wurden mithilfe immunozytochemischer F{\"a}rbungen die pr{\"a}- und postsynaptischen Profile klar ausgepr{\"a}gter synaptischer Komplexe (Mikroglomeruli, MG) der visuellen Region (Kragen) und der olfaktorischen Region (Lippe) der PK-Kelche visualisiert. Die Ergebnisse legen dar, dass eine Volumenzunahme der PK-Kelche w{\"a}hrend des {\"U}bergangs von Innendiensttieren zu Fourageuren von einer Abnahme der MG-Anzahl im Kragen und, mit einem geringeren Anteil, in der Lippe - dieser Effekt wird als Pruning bezeichnet - und einem gleichzeitigen Auswachsen an Dendriten PK-intrinsischer Kenyonzellen begleitet wird. Im Dunkeln gehaltene Tiere unterschiedlichen Alters zeigen nach Lichtaussetzung den gleichen Effekt und im Dunkel gehaltene, den Fourageuren altersm{\"a}ßig angepasste Tiere weisen eine vergleichbare MG-Anzahl im Kragen auf wie Innendiensttiere. Diese Ergebnisse deuten darauf hin, dass die immense strukturelle synaptische Plastizit{\"a}t in der Kragenregion der PK-Kelche haupts{\"a}chlich durch visuelle Erfahrungen ausgel{\"o}st wird und nicht ausschließlich mit Hilfe eines internen Programms abgespielt wird. Ameisen, welche unter Laborbedingungen bis zu einem Jahr alt wurden, zeigen eine vergleichbare Plastizit{\"a}t. Dies deutet darauf hin, dass das System {\"u}ber die ganze Lebensspanne eines Individuums flexibel bleibt. Erfahrene Fourageure wurden in Dunkelheit zur{\"u}ckgef{\"u}hrt, um zu untersuchen, ob die lichtausgel{\"o}ste synaptische Umstrukturierung reversibel ist, doch ihre PK zeigen nur einige die Zur{\"u}ckf{\"u}hrung widerspiegelnde Plastizit{\"a}tsauspr{\"a}gungen, besonders eine {\"A}nderung der pr{\"a}synaptischen Synapsinexprimierung. Mithilfe immunozytochemischer F{\"a}rbungen, konfokaler Mikroskopie und 3D-Rekonstruktionen wurden die pr{\"a}- und postsynaptischen Strukturen synaptischer Komplexe des LAL in C. fortis analysiert und potentielle strukturelle {\"A}nderungen bei Innendiensttieren und Fourageuren quantifiziert. Die Ergebnisse zeigen, dass diese Komplexe aus postsynaptischen, in einer zentralen Region angeordneten Forts{\"a}tzen bestehen, welche umringt sind von einem pr{\"a}synaptischen kelchartigen Profil. Eingehende und ausgehende Trakte wurden durch Farbstoffinjektionen identifiziert: Projektionsneurone des Anterioren Optischen Tuberkels kontaktieren Neurone, welche in den Zentralkomplex ziehen. Der Verhaltens{\"u}bergang wird von einer Zunahme an synaptischen Komplexen um ~13\% begleitet. Dieser Zuwachs suggeriert eine Art Kalibrierungsprozess in diesen potentiell kr{\"a}ftigen synaptischen Kontakten, welche vermutlich eine schnelle und belastbare Signal{\"u}bertragung in der Polarisationsbahn liefern. Die Analyse von im Freiland aufgenommener Verhaltenweisen von C. fortis enth{\"u}llen, dass die Ameisen, bevor sie mit ihrer Fouragiert{\"a}tigkeit anfangen, bis zu zwei Tage lang in unmittelbarer N{\"a}he des Nestes Entdeckungsl{\"a}ufe unternehmen, welche Pirouetten {\"a}hnliche Drehungen beinhalten. W{\"a}hrend dieser Entdeckungsl{\"a}ufe sammeln die Ameisen Lichterfahrung und assoziieren m{\"o}glicherweise den Nesteingang mit spezifischen Landmarken oder werden anderen visuellen Informationen, wie denen des Polarisationsmusters, ausgesetzt und adaptieren begleitend ihre neuronalen Netzwerke an die bevorstehende Herausforderung. Dar{\"u}ber hinaus k{\"o}nnten die Pirouetten einer Stimulation der an der Polarisationsbahn beteiligten neuronalen Netzwerke dienen. Videoanalysen legen dar, dass Lichtaussetzung nach drei Tagen die Bewegungsaktivit{\"a}t der Ameisen heraufsetzt. Die Tatsache, dass die neuronale Umstrukturierung in visuellen Zentren wie auch die Ver{\"a}nderungen im Verhalten im selben Zeitrahmen ablaufen, deutet darauf hin, dass ein Zusammenhang zwischen struktureller synaptischer Plastizit{\"a}t und dem Verhaltens{\"u}bergang von der Innendienst- zur Fouragierphase bestehen k{\"o}nnte. Cataglyphis besitzen hervorragende visuelle Navigationsf{\"a}higkeiten, doch sie nutzen zudem olfaktorische Signale, um das Nest oder die Futterquelle aufzusp{\"u}ren. Mithilfe konfokaler Mikroskopie und 3D-Rekonstruktionen wurden potentielle Anpassungen der prim{\"a}ren olfaktorischen Gehirnzentren untersucht, indem die Anzahl, Gr{\"o}ße und r{\"a}umliche Anordnung olfaktorischer Glomeruli im Antennallobus von C. fortis, C. albicans, C. bicolor, C. rubra, und C. noda verglichen wurde. Arbeiterinnen aller Cataglyphis-Arten haben eine geringere Glomeruli-Anzahl im Vergleich zu denen der mehr olfaktorisch-orientierten Formica Arten - einer Gattung nah verwandt mit Cataglyphis - und denen schon bekannter olfaktorisch-orientierter Ameisenarten. C. fortis hat die geringste Anzahl an Glomeruli im Vergleich zu allen anderen Cataglyphis-Arten und besitzt einen vergr{\"o}ßerten Glomerulus, der nahe dem Eingang des Antennennerves lokalisiert ist. C. fortis M{\"a}nnchen besitzen eine signifikant geringere Glomeruli-Anzahl im Vergleich zu Arbeiterinnen und K{\"o}niginnen und haben einen hervorstechenden M{\"a}nnchen-spezifischen Makroglomerulus, welcher wahrscheinlich an der Pheromon-Kommunikation beteiligt ist. Die Verhaltensrelevanz des vergr{\"o}ßerten Glomerulus der Arbeiterinnen bleibt schwer fassbar. Die Tatsache, dass C. fortis Mikrohabitate bewohnt, welche von allen anderen Cataglyphis Arten gemieden werden, legt nahe, dass extreme {\"o}kologische Bedingungen nicht nur zu Anpassungen der visuellen F{\"a}higkeiten, sondern auch des olfaktorischen Systems gef{\"u}hrt haben. Die vorliegende Arbeit veranschaulicht, dass Cataglyphis ein exzellenter Kandidat ist bei der Erforschung neuronaler Mechanismen, welche Navigationsfunktionalit{\"a}ten zugrundeliegen, und bei der Erforschung neuronaler Plastizit{\"a}t, welche verkn{\"u}pft ist mit der lebenslangen Flexibilit{\"a}t eines individuellen Verhaltensrepertoires.}, subject = {Neuroethologie}, language = {en} } @article{StiebKelberWehneretal.2011, author = {Stieb, Sara Mae and Kelber, Christina and Wehner, R{\"u}diger and R{\"o}ssler, Wolfgang}, title = {Antennal-Lobe Organization in Desert Ants of the Genus Cataglyphis}, series = {Brain, Behavior and Evolution}, volume = {77}, journal = {Brain, Behavior and Evolution}, number = {3}, issn = {0006-8977}, doi = {10.1159/000326211}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196815}, pages = {136-146}, year = {2011}, abstract = {Desert ants of the genus Cataglyphis possess remarkable visual navigation capabilities. Although Cataglyphis species lack a trail pheromone system, Cataglyphis fortis employs olfactory cues for detecting nest and food sites. To investigate potential adaptations in primary olfactory centers of the brain of C. fortis, we analyzed olfactory glomeruli (odor processing units) in their antennal lobes and compared them to glomeruli in different Cataglyphis species. Using confocal imaging and 3D reconstruction, we analyzed the number, size and spatial arrangement of olfactory glomeruli in C. fortis, C.albicans, C.bicolor, C.rubra, and C.noda. Workers of all Cataglyphis species have smaller numbers of glomeruli (198-249) compared to those previously found in olfactory-guided ants. Analyses in 2 species of Formica - a genus closely related to Cataglyphis - revealed substantially higher numbers of olfactory glomeruli (c. 370), which is likely to reflect the importance of olfaction in these wood ant species. Comparisons between Cataglyphis species revealed 2 special features in C. fortis. First, with c. 198 C. fortis has the lowest number of glomeruli compared to all other species. Second, a conspicuously enlarged glomerulus is located close to the antennal nerve entrance. Males of C. fortis possess a significantly smaller number of glomeruli (c. 150) compared to female workers and queens. A prominent male-specific macroglomerulus likely to be involved in sex pheromone communication occupies a position different from that of the enlarged glomerulus in females. The behavioral significance of the enlarged glomerulus in female workers remains elusive. The fact that C. fortis inhabits microhabitats (salt pans) that are avoided by all other Cataglyphis species suggests that extreme ecological conditions may not only have resulted in adaptations of visual capabilities, but also in specializations of the olfactory system.}, language = {en} } @phdthesis{Zube2008, author = {Zube, Christina}, title = {Neuronal representation and processing of chemosensory communication signals in the ant brain}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-30383}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Ants heavily rely on olfaction for communication and orientation and ant societies are characterized by caste- and sex-specific division of labor. Olfaction plays a key role in mediating caste-specific behaviours. I investigated whether caste- and sex-specific differences in odor driven behavior are reflected in specific differences and/or adaptations in the ant olfactory system. In particular, I asked the question whether in the carpenter ant, Camponotus floridanus, the olfactory pathway exhibits structural and/or functional adaptations to processing of pheromonal and general odors. To analyze neuroanatomical specializations, the central olfactory pathway in the brain of large (major) workers, small (minor) workers, virgin queens, and males of the carpenter ant C. floridanus was investigated using fluorescent tracing, immunocytochemistry, confocal microscopy and 3D-analyzes. For physiological analyzes of processing of pheromonal and non-pheromonal odors in the first odor processing neuropil , the antennal lobe (AL), calcium imaging of olfactory projection neurons (PNs) was applied. Although different in total glomerular volumes, the numbers of olfactory glomeruli in the ALs were similar across the female worker caste and in virgin queens. Here the AL contains up to ~460 olfactory glomeruli organized in 7 distinct clusters innervated via 7 antennal sensory tracts. The AL is divided into two hemispheres regarding innervations of glomeruli by PNs with axons leaving via a dual output pathway. This pathway consists of the medial (m) and lateral (l) antenno-cerebral tract (ACT) and connects the AL with the higher integration areas in the mushroom bodies (MB) and the lateral horn (LH). M- and l-ACT PNs differ in their target areas in the MB calyx and the LH. Three additional ACTs (mediolateral - ml) project to the lateral protocerebrum only. Males had ~45\% fewer glomeruli compared to females and one of the seven sensory tracts was absent. Despite a substantially smaller number of glomeruli, males possess a dual PN output pathway to the MBs. In contrast to females, however, only a small number of glomeruli were innervated by projection neurons of the m-ACT. Whereas all glomeruli in males were densely innervated by serotonergic processes, glomeruli innervated by sensory tract six lacked serotonergic innervations in the female castes. It appears that differences in general glomerular organization are subtle among the female castes, but sex-specific differences in the number, connectivity and neuromodulatory innervations of glomeruli are substantial and likely to promote differences in olfactory behavior. Calcium imaging experiments to monitor pheromonal and non-pheromonal processing in the ant AL revealed that odor responses were reproducible and comparable across individuals. Calcium responses to both odor groups were very sensitive (10-11 dilution), and patterns from both groups were partly overlapping indicating that processing of both odor classes is not spatially segregated within the AL. Intensity response patterns to the pheromone components tested (trail pheromone: nerolic acid; alarm pheromone: n-undecane), in most cases, remained invariant over a wide range of intensities (7-8 log units), whereas patterns in response to general odors (heptanal, octanol) varied across intensities. Durations of calcium responses to stimulation with the trail pheromone component nerolic acid increased with increasing odor concentration indicating that odor quality is maintained by a stable pattern (concentration invariance) and intensity is mainly encoded in the response durations of calcium activities. For n-undecane and both general odors increasing response dynamics were only monitored in very few cases. In summary, this is the first detailed structure-function analyses within the ant's central olfactory system. The results contribute to a better understanding of important aspects of odor processing and olfactory adaptations in an insect's central olfactory system. Furthermore, this study serves as an excellent basis for future anatomical and/or physiological experiments.}, subject = {Gehirn}, language = {en} }