@phdthesis{EngelhardtgebChristiansen2013, author = {Engelhardt [geb. Christiansen], Frauke}, title = {Synaptic Connectivity in the Mushroom Body Calyx of Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85058}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Learning and memory is considered to require synaptic plasticity at presynaptic specializations of neurons. Kenyon cells are the intrinsic neurons of the primary olfactory learning center in the brain of arthropods - the mushroom body neuropils. An olfactory mushroom body memory trace is supposed to be located at the presynapses of Kenyon cells. In the calyx, a sub-compartment of the mushroom bodies, Kenyon cell dendrites receive olfactory input provided via projection neurons. Their output synapses, however, were thought to reside exclusively along their axonal projections outside the calyx, in the mushroom body lobes. By means of high-resolution imaging and with novel transgenic tools, we showed that the calyx of the fruit fly Drosophila melanogaster also comprised Kenyon cell presynapses. At these presynapses, synaptic vesicles were present, which were capable of neurotransmitter release upon stimulation. In addition, the newly identified Kenyon cell presynapses shared similarities with most other presynapses: their active zones, the sites of vesicle fusion, contained the proteins Bruchpilot and Syd-1. These proteins are part of the cytomatrix at the active zone, a scaffold controlling synaptic vesicle endo- and exocytosis. Kenyon cell presynapses were present in γ- and α/β-type KCs but not in α/β-type Kenyon cells. The newly identified Kenyon cell derived presynapses in the calyx are candidate sites for an olfactory associative memory trace. We hypothesize that, as in mammals, recurrent neuronal activity might operate for memory retrieval in the fly olfactory system. Moreover, we present evidence for structural synaptic plasticity in the mushroom body calyx. This is the first demonstration of synaptic plasticity in the central nervous system of Drosophila melanogaster. The volume of the mushroom body calyx can change according to changes in the environment. Also size and numbers of microglomeruli - sub-structures of the calyx, at which projection neurons contact Kenyon cells - can change. We investigated the synapses within the microglomeruli in detail by using new transgenic tools for visualizing presynaptic active zones and postsynaptic densities. Here, we could show, by disruption of the projection neuron - Kenyon cell circuit, that synapses of microglomeruli were subject to activity-dependent synaptic plasticity. Projection neurons that could not generate action potentials compensated their functional limitation by increasing the number of active zones per microglomerulus. Moreover, they built more and enlarged microglomeruli. Our data provide clear evidence for an activity-induced, structural synaptic plasticity as well as for the activity-induced reorganization of the olfactory circuitry in the mushroom body calyx.}, subject = {Taufliege}, language = {en} } @article{BrandstaetterRoesslerKleineidam2011, author = {Brandst{\"a}tter, Andreas and R{\"o}ssler, W. and Kleineidam, C. J.}, title = {Friends and foes from an ant brain's point of view - neuronal correlates of colony odors in a social insect}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69046}, year = {2011}, abstract = {Background: Successful cooperation depends on reliable identification of friends and foes. Social insects discriminate colony members (nestmates/friends) from foreign workers (non-nestmates/foes) by colony-specific, multi-component colony odors. Traditionally, complex processing in the brain has been regarded as crucial for colony recognition. Odor information is represented as spatial patterns of activity and processed in the primary olfactory neuropile, the antennal lobe (AL) of insects, which is analogous to the vertebrate olfactory bulb. Correlative evidence indicates that the spatial activity patterns reflect odor-quality, i.e., how an odor is perceived. For colony odors, alternatively, a sensory filter in the peripheral nervous system was suggested, causing specific anosmia to nestmate colony odors. Here, we investigate neuronal correlates of colony odors in the brain of a social insect to directly test whether they are anosmic to nestmate colony odors and whether spatial activity patterns in the AL can predict how odor qualities like ''friend'' and ''foe'' are attributed to colony odors. Methodology/Principal Findings: Using ant dummies that mimic natural conditions, we presented colony odors and investigated their neuronal representation in the ant Camponotus floridanus. Nestmate and non-nestmate colony odors elicited neuronal activity: In the periphery, we recorded sensory responses of olfactory receptor neurons (electroantennography), and in the brain, we measured colony odor specific spatial activity patterns in the AL (calcium imaging). Surprisingly, upon repeated stimulation with the same colony odor, spatial activity patterns were variable, and as variable as activity patterns elicited by different colony odors. Conclusions: Ants are not anosmic to nestmate colony odors. However, spatial activity patterns in the AL alone do not provide sufficient information for colony odor discrimination and this finding challenges the current notion of how odor quality is coded. Our result illustrates the enormous challenge for the nervous system to classify multi-component odors and indicates that other neuronal parameters, e.g., precise timing of neuronal activity, are likely necessary for attribution of odor quality to multi-component odors.}, subject = {Ameisen}, language = {en} } @phdthesis{Brandstaetter2010, author = {Brandstaetter, Andreas Simon}, title = {Neuronal correlates of nestmate recognition in the carpenter ant, Camponotus floridanus}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-55963}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Cooperation is beneficial for social groups and is exemplified in its most sophisticated form in social insects. In particular, eusocial Hymenoptera, like ants and honey bees, exhibit a level of cooperation only rarely matched by other animals. To assure effective defense of group members, foes need to be recognized reliably. Ants use low-volatile, colony-specific profiles of cuticular hydrocarbons (colony odor) to discriminate colony members (nestmates) from foreign workers (non-nestmates). For colony recognition, it is assumed that multi-component colony odors are compared to a neuronal template, located in a so far unidentified part of the nervous system, where a mismatch results in aggression. Alternatively, a sensory filter in the periphery of the nervous system has been suggested to act as a template, causing specific anosmia to nestmate colony odor due to sensory adaptation and effectively blocking perception of nestmates. Colony odors are not stable, but change over time due to environmental influences. To adjust for this, the recognition system has to be constantly updated (template reformation). In this thesis, I provide evidence that template reformation can be induced artificially, by modifying the sensory experience of carpenter ants (Camponotus floridanus; Chapter 1). The results of the experiments showed that template reformation is a relatively slow process taking several hours and this contradicts the adaptation-based sensory filter hypothesis. This finding is supported by first in-vivo measurements describing the neuronal processes underlying template reformation (Chapter 5). Neurophysiological measurements were impeded at the beginning of this study by the lack of adequate technical means to present colony odors. In a behavioral assay, I showed that tactile interaction is not necessary for colony recognition, although colony odors are of very low volatility (Chapter 2). I developed a novel stimulation technique (dummy-delivered stimulation) and tested its suitability for neurophysiological experiments (Chapter 3). My experiments showed that dummy-delivered stimulation is especially advantageous for presentation of low-volatile odors. Colony odor concentration in headspace was further increased by moderately heating the dummies, and this allowed me to measure neuronal correlates of colony odors in the peripheral and the central nervous system using electroantennography and calcium imaging, respectively (Chapter 4). Nestmate and non-nestmate colony odor elicited strong neuronal responses in olfactory receptor neurons of the antenna and in the functional units of the first olfactory neuropile of the ant brain, the glomeruli of the antennal lobe (AL). My results show that ants are not anosmic to nestmate colony odor and this clearly invalidates the previously suggested sensory filter hypothesis. Advanced two-photon microscopy allowed me to investigate the neuronal representation of colony odors in different neuroanatomical compartments of the AL (Chapter 5). Although neuronal activity was distributed inhomogeneously, I did not find exclusive representation restricted to a single AL compartment. This result indicates that information about colony odors is processed in parallel, using the computational power of the whole AL network. In the AL, the patterns of glomerular activity (spatial activity patterns) were variable, even in response to repeated stimulation with the same colony odor (Chapter 4\&5). This finding is surprising, as earlier studies indicated that spatial activity patterns in the AL reflect how an odor is perceived by an animal (odor quality). Under natural conditions, multi-component odors constitute varying and fluctuating stimuli, and most probably animals are generally faced with the problem that these elicit variable neuronal responses. Two-photon microscopy revealed that variability was higher in response to nestmate than to non-nestmate colony odor (Chapter 5), possibly reflecting plasticity of the AL network, which allows template reformation. Due to their high variability, spatial activity patterns in response to different colony odors were not sufficiently distinct to allow attribution of odor qualities like 'friend' or 'foe'. This finding challenges our current notion of how odor quality of complex, multi-component odors is coded. Additional neuronal parameters, e.g. precise timing of neuronal activity, are most likely necessary to allow discrimination. The lower variability of activity patterns elicited by non-nestmate compared to nestmate colony odor might facilitate recognition of non-nestmates at the next level of the olfactory pathway. My research efforts made the colony recognition system accessible for direct neurophysiological investigations. My results show that ants can perceive their own nestmates. The neuronal representation of colony odors is distributed across AL compartments, indicating parallel processing. Surprisingly, the spatial activity patterns in response to colony are highly variable, raising the question how odor quality is coded in this system. The experimental advance presented in this thesis will be useful to gain further insights into how social insects discriminate friends and foes. Furthermore, my work will be beneficial for the research field of insect olfaction as colony recognition in social insects is an excellent model system to study the coding of odor quality and long-term memory mechanisms underlying recognition of complex, multi-component odors.}, subject = {Neuroethologie}, language = {en} } @phdthesis{Junker2010, author = {Junker, Robert R.}, title = {Scents as Floral Defence : Impact on Species and Communities, Mechanisms and Ecological Consequences}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-51827}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Floral scents are compositions of diverse volatile substances. Despite the chemical complexity, the interpretation of their ecological relevance was mostly confined to the attractive function facilitating interactions with pollinators. However, the negative impact on plants' reproduction by non-pollinating flower visitors is pronounced and demands floral adaptations that exclude antagonists. The aim of this dissertation was to explore the defensive properties of floral odours and to imbed them into ecological contexts. The thesis covered four scopes: the scents' impact on individual species and on flower-visitor communities, the mechanisms that explain the dual function of floral volatiles (attraction and defence), and the ecological consequences of missing defences for plants and pollinators. The most important floral antagonists that are known to reduce the reproductive fitness of plants were identified and their responses towards floral scents were examined. We found that representatives of non-pollinating florivores (bush crickets), predators that lure for pollinators (spiders), and microorganisms that potentially colonize petals were repelled, deterred or inhibited in their growth by floral secondary metabolites. An earlier study revealed the same effect on nectar thieving ants. These experimental studies clearly demonstrate that scents universally serve as floral defences that have the potential to reduce or even prevent the visitation and exploitation of flowers by these antagonists. Within diverse communities, we tested whether species-specific responses to odours reflect the structure of naturally occurring flower-visitor interactions in order to examine the ecological importance of defensive floral scents. On three Hawaiian Islands, ant-flower interactions involving co-occurring native and introduced plants were observed. Ants were historically absent from the geographically isolated Hawaiian archipelago. Thus, we hypothesized that native Hawaiian plants lack floral features that exclude ants and therefore would be heavily exploited by introduced, invasive ants. We quantified the residual interaction strength of each pair of ant/plant species as the deviation of the observed interaction frequency from a null-model prediction based on available nectar sugar in a local plant community and local ant activity at sugar baits. As predicted, flowers of plants that are endemic or indigenous to Hawaii were stronger exploited by ants than flowers of co- occurring introduced plants, which share an evolutionary history with ants. We showed experimentally that the absence of ants on flowers of most introduced and few native plants species was due to morphological barriers and/or repellent floral scents, examined in a mobile olfactometer. Analysis of floral volatiles, however, revealed no consistent ant- repellent "syndrome", probably due to the high chemical variability within the floral scent bouquets. On a fallow land in Germany, we linked the responses of receivers (flower visitors) towards signals (flower scent) with the structure of a highly diverse natural flower-insect network. For each interaction, we defined link temperature - a newly developed metric - as the deviation of the observed interaction strength from neutrality, assuming that animals randomly interact with flowers. Link temperature was positively correlated to the specific visitors' responses to floral scents. Thus, communication between plants and consumers via phytochemical signals reflects a significant part of the microstructure in a complex network. Negative as well as positive responses towards floral scents contributed to these results, where individual experience was important, apart from innate behaviour. The demonstration of the contrasting functions of floral scents that control the visitor spectrum of flowers represents the first evidence that floral scents act as filters allowing access to some flower visitors but simultaneously exclude others. These findings raise the central question of this thesis: what evolutionary mechanism explains the dual function of floral scents? The view of flower visitors as mutualistic and antagonistic agents considers primarily the interest of plants. A classification emphasizing the consumer's point of view, however, may be more useful when considering adaptations of animals to flower visits. Therefore, we introduced a novel classification that acknowledges the consumers' interest in the interaction: some animals evolved an obligate dependence on floral resources, others use nectar and pollen as supplement to their diet and are thus regarded as facultative flower visitors. In a meta-analysis covering 18 studies on the responses of animals to floral scents, we assigned the animals to the categories of obligate or facultative flower visitors. Their responses to floral scents were compared. On average, obligate flower visitors, often corresponding to pollinators, were attracted to floral scent compounds. In contrast, facultative and mainly antagonistic visitors were strongly repelled by flower odours. The findings confirm that floral scents have a dual function both as attractive and defensive cues. Whether an animal depends on floral resources determines its response to these signals, suggesting that obligate flower visitors evolved a tolerance against primarily defensive compounds. These findings were confirmed in an experimental study. We conclude that floral scents protect flowers against visitors that would otherwise reduce the reproductive success of plants. In Hawaii, where flowers do not have defensive means against ants, we studied the impact of ants on the pollination effectiveness of endemic and introduced bees and on the fruit set of an endemic tree Metrosideros polymorpha (Myrtaceae). Ants were dominant nectar-consumers that mostly depleted the nectar of visited inflorescences. Accordingly, the visitation frequency, duration, and consequently the pollinator effectiveness of nectar-foraging bees strongly decreased on ant-visited flowers, whereas pollen-collecting bees remained largely unaffected by ants. Overall, endemic bees (Hylaeus spp.) were much poorer pollinators than introduced honeybees (Apis mellifera). The average net effect of ants on pollination of M. polymorpha was neutral, corresponding to a similar fruit set of ant-visited and ant-free inflorescences. A second Hawaiian plant species, Vaccinium reticulatum (Ericaceae), was visited by the caterpillars of an introduced plume moth (Stenoptilodes littoralis) that destroyed buds and flowers of this species. The ants' presence on flowers strongly reduced flower parasitism by the caterpillars and consequently decreased the loss of flowers and buds. This is, to our knowledge, the first documented mutualism between invasive ants and an endemic plant species in Hawaii. Thus, ants that have been shown to be detrimental flower visitors elsewhere, had neutral (M. polymorpha) or even positive (V. reticulatum) effects on endemic Hawaiian plants. However, their overall negative effect on the Hawaiian flora and fauna should not be disregarded.}, subject = {Bl{\"u}te}, language = {en} }