@phdthesis{Herweg2018, author = {Herweg, Jo-Ana}, title = {Die Simkania-Vakuole: Die Rolle von ER, retro-/anterograden Protein- und Lipidtransport}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-136844}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Simkania negevensis (Sn) is a Chlamydia-like obligate intracellular bacterium which replicates within a membrane bound vacuole, termed SCV (Simkania-containing vacuole). The SCV is a unique compartment closely associated with ER-membranes, consequently ER-stress is blocked by the bacteria. SCV morphology is similar among epithelial cells (HeLa229, A549, HEp-2) and macrophages (THP1). The SCV represents the first intracellular interface between the host and pathogen which serves as a replication niche. Identifying human and bacterial factors associated with ER-SCV-membranes should contribute towards the understanding of SCV composition and formation as well as interactions with ER or transports. Comparative studies of the SCV should indicate similarities to the chlamydial inclusion since some host cell factors are already known for Chlamydia. In this thesis, a purification protocol has been established that is applicable to HeLa229 and THP1 ER-SCV-membranes and has been further utilized for proteome and lipidome analyses. 302 bacterial and 1178 human proteins composing ER-SCV-membranes and 885 bacterial proteins composing purified Sn have been identified by using label-free mass spectrometry measurements. Among the human factors of non or Sn infected ER-(SCV-) membranes we found 51 enriched or depleted proteins in addition to 57 transport associated ones that indicated infection induced differences among intracellular protein transport. Contrary regulation of retrograde and anterograde transported proteins could be confirmed by using RNA interference and inhibitor tests, whereby Clathrin-associated and COPI vesicles seem to play a central role. Application of Retro-inhibitors, which interfered with retrograde transport processes between endosome to Golgi or early to late endosomes, as well as Bafilomycin A1 (retrograde, late endosomes and lysosomes) and Brefeldin A (anterograde, ER and Golgi) exerted a strong influence on SCV formation, morphology and intracellular lipid transport. By using label-free mass spectrometry measurements and thin layer chromatography we could determine differences in lipid levels within Sn infected cells, ER-SCV-membranes and purified Sn in comparison to uninfected cells. In addition to lipid enrichment or depletion in whole-cell extracts and ER-SCV-membranes, we identified two infection-specific lipids, cholesterol-ß-Dglucoside and PE 30:0. Further, high-throughput RNA interference tests indicated a dependence of Sn infections on endosome to Golgi and Clathrin-associated vesicle transports. Taken together, we were able to identify initial potential SCV-associated proteins and lipids that were connected to bacterial infection. Furthermore, SCV formation and Sn infectiousness depends on retrograde transport processes and therefore also on acquisition of nutrients, such as lipids.}, subject = {Simkania}, language = {de} } @phdthesis{FernandezMora2005, author = {Fern{\´a}ndez-Mora, Eugenia}, title = {Analysis of the maturation of Rhodococcus equi-containing vacuoles in macrophages}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-14049}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Rhodococcus equi is a Gram-positive intracellular pathogen which can cause severe bronchopneumonia in foals. In recent years, the role of this bacterium as human pathogen has been noted, as R.equi infections in humans have increase in frequency. This increase is associated with the rise in immunosupressed individuals, specially AIDS patients, where infection leads to symptoms and pathology similar to those seen in foals with a high mortality rate. Due to its capability to survive and multiply in murine and equine macrophages, R.equi has been classified as a facultative intracellular bacterium. R.equi is found frequently in macrophages in alveolar infiltrate from infected animals. The pathogenicity of R.equi depends on its ability to exist and multiply inside macrophages and has been associated with the presence of virulence plasmids. It has been observed that, inside foal alveolar macrophages, R.equi-containing vacuoles (RCVs) do not mature into phagolysosomes. However, most of the intracellular events during R.equi infection have not been investigated in detail. The aim of this study was to elucidate the intracellular compartmentation of R.equi and the mechanism by which the bacteria avoid destruction in host macrophages. The importance of the virulence-associated plasmids of R.equi for the establishment of RCVs was also evaluated. Furthermore, the intracellular fate of viable and non-viable R.equi was compared in order to study whether viability of R.equi influeciantes the establishment of RCVs. In this study, the RCV was characterized by using a variety of endocytic markers to follow the path of the bacteria trhough murine macropages. Transmission electron microscopy-base analysis showed that R.equi was found equally frequently in phagosomes with loosely or thightly apposed membranes, and RCV often contains numerous membranous vesicles. Laser scanning microscopy of infected macrophages showed that the majority of phagosomes containing R.equi acquired transiently the early endosomal markers Rab5, Ptlns3P, and EEA-1, suggesting initially undisturbed phagosome maturation. Although the RCV acquired some late endosomal markers, such as Rab7, LAMP-1, and Lamp-2, they did not acquired vATPase, did not interact with pre-labeled lysosomes, and failed to acidify. These data clearly suggest that the RCV is a compartment which has left vacuoles that resemble multivesicular body compartments (MVB), which are transport intermediates between early and late endosomes and display internal vesicles very similar to the ones observed within RCVs. Analyisis of several R.equi strains containing either VapA- or VapB-expressing plasmids or neither demonstrated that the possession of the virulence-associated plasmids does not affect phagosome trafficking over a two hour period of infection. The finding that non-viable R.equi was still able to inhibit phagosome maturation (although not to the same extent as viable R.equi did) suggests that heat-insensitive factors, such as cell periphery lipids, may play a major role in inhibition of phagosome maturation, although heat-sensitive factors may also be involved.}, subject = {Rhodococcus equi}, language = {en} }