@phdthesis{Link2013, author = {Link, Jana}, title = {The role of meiotic nuclear envelope components in chromosome dynamics and meiotic progression}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-83540}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Meiosis is the specialised cell division which produces haploid germ cells, capable of developing into fertile gametes, from diploid progenitor cells. During meiosis, chromosomes undergo strictly regulated and strongly conserved dynamic processes, at the beginning of which the telomeres are actively tethered and intimately attached to the nuclear envelope (NE). The attached telomeres are then moved within the NE through cytoskeletal forces to cluster within a restricted region, forming the highly conserved bouquet stage. Subsequently, the bouquet is released simultaneously to the completion of the synaptonemal complex assembly tightly linking homologous chromosome pairs together. In combination these processes are essential for the successful completion of meiosis. Because the meiotic NE serves as a platform for telomere attachment and movement it can be assumed to be critically involved in these events crucial for fertility. However, the precise roles of many meiotic NE proteins in the attachment and movement of telomeres still remain elusive. Therefore, it was the aim of this thesis to investigate the functions of two mammalian meiotic NE components in telomere attachment and dynamics. The first part of this thesis is concerned with the meiosis-specific lamin C2. Lamin C2 is the only A-type lamin expressed during meiosis and has in previous studies shown to feature altered meiosis-specific properties, clearly distinguishing it from somatic lamins. Because lamin C2 is enriched at sites of telomere attachment, exhibits a high mobility within the nuclear lamina and influences NE integrity, it has been postulated that it may locally increase NE flexibility to allow efficient meiotic telomere movement. Therefore, possible functions of lamin C2 in the movement of attached telomeres were investigated in this thesis by studying the bouquet formation and release of pubertal mice specifically lacking lamin C2. This revealed that lamin C2 deficient mice show a delayed bouquet release, leading to severe defects in the synaptic pairing of homologous chromosomes, which in turn results in infertility of the males. Therefore, the efficient repositioning of attached meiotic telomeres, facilitated by lamin C2, seems essential for completing meiosis. The second part of this thesis focuses on the protein complex responsible for the attachment of meiotic telomeres to the NE and their coupling to the cytoskeleton. The so-called LINC complex is composed of SUN domain proteins in the inner nuclear membrane interacting with KASH domain proteins of the outer nuclear membrane. In previous studies it had been shown that SUN1, SUN2 and KASH5 localise to the attached meiotic telomeres. Regarding the meiotic role of SUN2, however, contradicting results have recently been discussed, showing the need for further investigations. Using an available SUN1 deficient mouse strain, this thesis was able to show that SUN2 is sufficient for telomere attachment per se although telomere attachment is impaired in SUN1 deficient mice leading to infertility. It is also demonstrated that SUN2 forms a functional LINC complex together with KASH5 to mediate this telomere attachment. This LINC complex in the absence of SUN1 is able to move attached telomeres into a bouquet-like cluster formation. Therefore, this demonstrates that SUN2 is involved in the functional attachment and movement of meiotic telomeres. In summary, this thesis has shown SUN2 and the meiotic nuclear lamina to be directly involved in or essential for the highly conserved attachment and movement of telomeres, making them critical for a successful meiosis. The meiotic NE is therefore in this thesis demonstrated to be a determinant of mammalian fertility.}, subject = {Meiose}, language = {en} } @phdthesis{Reil2013, author = {Reil, Michael}, title = {Essentielle Rollen des LEM-Dom{\"a}nen Proteins MAN1 w{\"a}hrend der Organentwicklung von Xenopus laevis und {\"u}berlappende Funktionen von Emerin}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85105}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Mutationen in Genen, die f{\"u}r Kernh{\"u}llproteine codieren sind mit einer stetig zunehmenden Anzahl menschlicher Erkrankungen verbunden, die als Envelopathien bezeichnet werden. Erstaunlicherweise betrifft die Pathologie dieser Krankheiten spezifische Gewebe und Organe, obwohl entsprechende Proteine meist ubiquit{\"a}r exprimiert werden. So f{\"u}hren beispielsweise Defekte in Emerin, einem Protein der inneren Kernh{\"u}lle, zur X-chromosomalen Emery- Dreifuss Muskeldystrophie (EDMD). Diese Krankheit ist durch Muskelschw{\"a}che oder - schwund gekennzeichnet. Defekte im Kernh{\"u}llprotein MAN1 sind dagegen mit Krankheiten verbunden, die Knochen- und Hautgewebe betreffen. Interessanterweise besitzen beide Proteine eine evolution{\"a}r hoch konservierte Dom{\"a}ne, die sog. LEM-Dom{\"a}ne. LEM-Dom{\"a}nen Proteine k{\"o}nnen mit der Kernlamina interagieren, ebenso mit dem sog. Barrier-to- Autointegration Factor (BAF) sowie mit zahlreichen Transkriptionsfaktoren. Dennoch ist die funktionelle Rolle der LEM-Dom{\"a}nen Proteine bis dato nicht vollst{\"a}ndig aufgekl{\"a}rt. In der vorliegenden Studie sollten daher die Funktionen von MAN1 und Emerin w{\"a}hrend der Fr{\"u}hentwicklung von Xenopus laevis untersucht werden. Vorangehende Untersuchungen zeigten, dass Mikroinjektionen von XMAN1- Antik{\"o}rpern in Zwei-Zell-Stadien befruchteter Eizellen zu einem Arrest der Zellteilung in der injizierten Blastomere f{\"u}hrten. Da dabei eine St{\"o}rung der Kernh{\"u}llbildung spekuliert wurde, sollte durch Antik{\"o}rper-vermittelter Inhibition von XMAN1 die Bildung von in vitro Kernen im Xenopus Eiextrakt untersucht werden. Dabei wurden Kerne beobachtet, die dekondensiertes Chromatin zeigten, bei denen jedoch eine Fusion von Membranvesikeln zu einer durchgehenden Kernh{\"u}lle nicht stattgefunden hatte. Fr{\"u}here Charakterisierungen von MAN1 und Emerin zeigten unterschiedliche Expressionsmuster w{\"a}hrend der Entwicklung von X. laevis. Da XMAN1 ubiquit{\"a}r exprimiert und Xemerin jedoch erstmals ab Stadium 41 nachweisbar ist, war es mittels Mikroinjektion von Xemerin m{\"o}glich zu zeigen, dass es in der Lage ist den Arrest der Zellteilung zu verhindern. Es wurde daher die These aufgestellt, dass MAN1 und Emerin w{\"a}hrend der Fr{\"u}hentwicklung von Xenopus {\"u}berlappende Funktionen besitzen. Um diese These zu pr{\"u}fen, wurde zun{\"a}chst unter Verwendung des Proximity Ligation Assays untersucht, ob beide Proteine miteinander interagieren k{\"o}nnen. Mit Hilfe dieser Methode konnte gezeigt werden, dass Interaktionen beider Proteine innerhalb der Kernh{\"u}lle lokalisieren. Die Interaktionen blieben w{\"a}hrend der Mitose bestehen und waren erst wieder zum Ende der Mitose in der Kernh{\"u}lle nachweisbar. Diese Resultate deuten daher darauf hin, dass XMAN1/Xemerin-Interaktionen w{\"a}hrend der ...}, subject = {Organogenese}, language = {de} }