@article{GrebinykPrylutskaGrebinyketal.2019, author = {Grebinyk, Anna and Prylutska, Svitlana and Grebinyk, Sergii and Prylutskyy, Yuriy and Ritter, Uwe and Matyshevska, Olga and Dandekar, Thomas and Frohme, Marcus}, title = {Complexation with C\(_{60}\) fullerene increases doxorubicin efficiency against leukemic cells in vitro}, series = {Nanoscale Research Letters}, volume = {14}, journal = {Nanoscale Research Letters}, number = {61}, doi = {10.1186/s11671-019-2894-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228257}, year = {2019}, abstract = {Conventional anticancer chemotherapy is limited because of severe side effects as well as a quickly evolving multidrug resistance of the tumor cells. To address this problem, we have explored a C\(_{60}\) fullerene-based nanosized system as a carrier for anticancer drugs for an optimized drug delivery to leukemic cells.Here, we studied the physicochemical properties and anticancer activity of C\(_{60}\) fullerene noncovalent complexes with the commonly used anticancer drug doxorubicin. C\(_{60}\)-Doxorubicin complexes in a ratio 1:1 and 2:1 were characterized with UV/Vis spectrometry, dynamic light scattering, and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The obtained analytical data indicated that the 140-nm complexes were stable and could be used for biological applications. In leukemic cell lines (CCRF-CEM, Jurkat, THP1 and Molt-16), the nanocomplexes revealed 3.5 higher cytotoxic potential in comparison with the free drug in a range of nanomolar concentrations. Also, the intracellular drug's level evidenced C\(_{60}\) fullerene considerable nanocarrier function.The results of this study indicated that C\(_{60}\) fullerene-based delivery nanocomplexes had a potential value for optimization of doxorubicin efficiency against leukemic cells.}, language = {en} }