@article{FrickeRedlichZhangetal.2023, author = {Fricke, Ute and Redlich, Sarah and Zhang, Jie and Benjamin, Caryl S. and Englmeier, Jana and Ganuza, Cristina and Haensel, Maria and Riebl, Rebekka and Rojas-Botero, Sandra and Tobisch, Cynthia and Uhler, Johannes and Uphus, Lars and Steffan-Dewenter, Ingolf}, title = {Earlier flowering of winter oilseed rape compensates for higher pest pressure in warmer climates}, series = {Journal of Applied Ecology}, volume = {60}, journal = {Journal of Applied Ecology}, number = {2}, doi = {10.1111/1365-2664.14335}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312562}, pages = {365 -- 375}, year = {2023}, abstract = {Global warming can increase insect pest pressure by enhancing reproductive rates. Whether this translates into yield losses depends on phenological synchronisation of pests with their host plants and natural enemies. Simultaneously, landscape composition may mitigate climate effects by shaping the resource availability for pests and their antagonists. Here, we study the combined effects of temperature and landscape composition on pest abundances, larval parasitism, crop damage and yield, while also considering crop phenology, to identify strategies for sustainable management of oilseed rape (OSR) pests under warming climates. In all, 29 winter OSR crop fields were investigated in different climates (defined by multi-annual mean temperature, MAT) and landscape contexts in Bavaria, Germany. We measured abundances of adult pollen beetles and stem weevil larvae, pollen beetle larval parasitism, bud loss, stem damage and seed yield, and calculated the flowering date from growth stage observations. Landscape parameters (proportion of non-crop and OSR area, change in OSR area relative to the previous year) were calculated at six spatial scales (0.6-5 km). Pollen beetle abundance increased with MAT but to different degrees depending on the landscape context, that is, increased less strongly when OSR proportions were high (1-km scale), interannually constant (5-km scale) or both. In contrast, stem weevil abundance and stem damage did not respond to landscape composition nor MAT. Pollen beetle larval parasitism was overall low, but occasionally exceeded 30\% under both low and high MAT and with reduced OSR area (0.6-km scale). Despite high pollen beetle abundance in warm climates, yields were high when OSR flowered early. Thereby, higher temperatures favoured early flowering. Only among late-flowering OSR crop fields yield was higher in cooler than warmer climates. Bud loss responded analogously. Landscape composition did not substantially affect bud loss and yield. Synthesis and applications: Earlier flowering of winter OSR compensates for higher pollen beetle abundance in warmer climates, while interannual continuity of OSR area prevents high pollen beetle abundance in the first place. Thus, regional coordination of crop rotation and crop management promoting early flowering may contribute to sustainable pest management in OSR under current and future climatic conditions.}, language = {en} } @article{KernerKraussMaihoffetal.2023, author = {Kerner, Janika M. and Krauss, Jochen and Maihoff, Fabienne and Bofinger, Lukas and Classen, Alice}, title = {Alpine butterflies want to fly high: Species and communities shift upwards faster than their host plants}, series = {Ecology}, volume = {104}, journal = {Ecology}, number = {1}, doi = {10.1002/ecy.3848}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312015}, year = {2023}, abstract = {Despite sometimes strong codependencies of insect herbivores and plants, the responses of individual taxa to accelerating climate change are typically studied in isolation. For this reason, biotic interactions that potentially limit species in tracking their preferred climatic niches are ignored. Here, we chose butterflies as a prominent representative of herbivorous insects to investigate the impacts of temperature changes and their larval host plant distributions along a 1.4-km elevational gradient in the German Alps. Following a sampling protocol of 2009, we revisited 33 grassland plots in 2019 over an entire growing season. We quantified changes in butterfly abundance and richness by repeated transect walks on each plot and disentangled the direct and indirect effects of locally assessed temperature, site management, and larval and adult food resource availability on these patterns. Additionally, we determined elevational range shifts of butterflies and host plants at both the community and species level. Comparing the two sampled years (2009 and 2019), we found a severe decline in butterfly abundance and a clear upward shift of butterflies along the elevational gradient. We detected shifts in the peak of species richness, community composition, and at the species level, whereby mountainous species shifted particularly strongly. In contrast, host plants showed barely any change, neither in connection with species richness nor individual species shifts. Further, temperature and host plant richness were the main drivers of butterfly richness, with change in temperature best explaining the change in richness over time. We concluded that host plants were not yet hindering butterfly species and communities from shifting upwards. However, the mismatch between butterfly and host plant shifts might become a problem for this very close plant-herbivore relationship, especially toward higher elevations, if butterflies fail to adapt to new host plants. Further, our results support the value of conserving traditional extensive pasture use as a promoter of host plant and, hence, butterfly richness.}, language = {en} } @article{DitzelKoenigMusembietal.2022, author = {Ditzel, Pia and K{\"o}nig, Sebastian and Musembi, Peter and Peters, Marcell K.}, title = {Correlation between coral reef condition and the diversity and abundance of fishes and sea urchins on an East African coral reef}, series = {Oceans}, volume = {3}, journal = {Oceans}, number = {1}, issn = {2673-1924}, doi = {10.3390/oceans3010001}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284503}, pages = {1 -- 14}, year = {2022}, abstract = {Coral reefs are one of the most diverse marine ecosystems, providing numerous ecosystem services. This present study investigated the relationship between coral reef condition and the diversity and abundance of fishes, on a heavily fished East African coral reef at Gazi Bay, Kenya. Underwater visual censuses were conducted on thirty 50 × 5 m belt transects to assess the abundance and diversity of fishes. In parallel, a 25-m length of each of the same transects was recorded with photo-quadrats to assess coral community structure and benthic characteristics. For statistical analyses, multi-model inference based on the Akaike Information Criterion was used to evaluate the support for potential predictor variables of coral reef and fish diversity. We found that coral genus richness was negatively correlated with the abundance of macroalgae, whereas coral cover was positively correlated with both the abundance of herbivorous invertebrates (sea urchins) and with fish family richness. Similarly, fish family richness appeared mainly correlated with coral cover and invertebrate abundance, although no correlates of fish abundance could be identified. Coral and fish diversity were very low, but it appears that, contrary to some locations on the same coast, sea urchin abundance was not high enough to be having a negative influence on coral and fish assemblages. Due to increasing threats to coral reefs, it is important to understand the relationship among the components of the coral reef ecosystem on overfished reefs such as that at Gazi Bay.}, language = {en} } @article{MaihoffFriessHoissetal.2023, author = {Maihoff, Fabienne and Friess, Nicolas and Hoiss, Bernhard and Schmid-Egger, Christian and Kerner, Janika and Neumayer, Johann and Hopfenm{\"u}ller, Sebastian and B{\"a}ssler, Claus and M{\"u}ller, J{\"o}rg and Classen, Alice}, title = {Smaller, more diverse and on the way to the top: Rapid community shifts of montane wild bees within an extraordinary hot decade}, series = {Diversity and Distributions}, volume = {29}, journal = {Diversity and Distributions}, number = {2}, doi = {10.1111/ddi.13658}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312126}, pages = {272-288}, year = {2023}, abstract = {Aim Global warming is assumed to restructure mountain insect communities in space and time. Theory and observations along climate gradients predict that insect abundance and richness, especially of small-bodied species, will increase with increasing temperature. However, the specific responses of single species to rising temperatures, such as spatial range shifts, also alter communities, calling for intensive monitoring of real-world communities over time. Location German Alps and pre-alpine forests in south-east Germany. Methods We empirically examined the temporal and spatial change in wild bee communities and its drivers along two largely well-protected elevational gradients (alpine grassland vs. pre-alpine forest), each sampled twice within the last decade. Results We detected clear abundance-based upward shifts in bee communities, particularly in cold-adapted bumble bee species, demonstrating the speed with which mobile organisms can respond to climatic changes. Mean annual temperature was identified as the main driver of species richness in both regions. Accordingly, and in large overlap with expectations under climate warming, we detected an increase in bee richness and abundance, and an increase in small-bodied species in low- and mid-elevations along the grassland gradient. Community responses in the pre-alpine forest gradient were only partly consistent with community responses in alpine grasslands. Main Conclusion In well-protected temperate mountain regions, small-bodied bees may initially profit from warming temperatures, by getting more abundant and diverse. Less severe warming, and differences in habitat openness along the forested gradient, however, might moderate species responses. Our study further highlights the utility of standardized abundance data for revealing rapid changes in bee communities over only one decade.}, language = {en} }