@article{BrunkSputhDooseetal.2018, author = {Brunk, Michael and Sputh, Sebastian and Doose, S{\"o}ren and van de Linde, Sebastian and Terpitz, Ulrich}, title = {HyphaTracker: An ImageJ toolbox for time-resolved analysis of spore germination in filamentous fungi}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, doi = {10.1038/s41598-017-19103-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-221691}, year = {2018}, abstract = {The dynamics of early fungal development and its interference with physiological signals and environmental factors is yet poorly understood. Especially computational analysis tools for the evaluation of the process of early spore germination and germ tube formation are still lacking. For the time-resolved analysis of conidia germination of the filamentous ascomycete Fusarium fujikuroi we developed a straightforward toolbox implemented in ImageJ. It allows for processing of microscopic acquisitions (movies) of conidial germination starting with drift correction and data reduction prior to germling analysis. From the image time series germling related region of interests (ROIs) are extracted, which are analysed for their area, circularity, and timing. ROIs originating from germlings crossing other hyphae or the image boundaries are omitted during analysis. Each conidium/hypha is identified and related to its origin, thus allowing subsequent categorization. The efficiency of HyphaTracker was proofed and the accuracy was tested on simulated germlings at different signal-to-noise ratios. Bright-field microscopic images of conidial germination of rhodopsin-deficient F. fujikuroi mutants and their respective control strains were analysed with HyphaTracker. Consistent with our observation in earlier studies the CarO deficient mutant germinated earlier and grew faster than other, CarO expressing strains.}, language = {en} } @article{LuDreyerDickinsonetal.2023, author = {Lu, Jinping and Dreyer, Ingo and Dickinson, Miles Sasha and Panzer, Sabine and Jaślan, Dawid and Navarro-Retamal, Carlos and Geiger, Dietmar and Terpitz, Ulrich and Becker, Dirk and Stroud, Robert M. and Marten, Irene and Hedrich, Rainer}, title = {Vicia faba SV channel VfTPC1 is a hyperexcitable variant of plant vacuole two pore channels}, series = {eLife}, volume = {12}, journal = {eLife}, doi = {10.7554/eLife.86384}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350264}, year = {2023}, abstract = {To fire action-potential-like electrical signals, the vacuole membrane requires the two-pore channel TPC1, formerly called SV channel. The TPC1/SV channel functions as a depolarization-stimulated, non-selective cation channel that is inhibited by luminal Ca\(^{2+}\). In our search for species-dependent functional TPC1 channel variants with different luminal Ca\(^{2+}\) sensitivity, we found in total three acidic residues present in Ca\(^{2+}\) sensor sites 2 and 3 of the Ca\(^{2+}\)-sensitive AtTPC1 channel from Arabidopsis thaliana that were neutral in its Vicia faba ortholog and also in those of many other Fabaceae. When expressed in the Arabidopsis AtTPC1-loss-of-function background, wild-type VfTPC1 was hypersensitive to vacuole depolarization and only weakly sensitive to blocking luminal Ca\(^{2+}\). When AtTPC1 was mutated for these VfTPC1-homologous polymorphic residues, two neutral substitutions in Ca\(^{2+}\) sensor site 3 alone were already sufficient for the Arabidopsis At-VfTPC1 channel mutant to gain VfTPC1-like voltage and luminal Ca\(^{2+}\) sensitivity that together rendered vacuoles hyperexcitable. Thus, natural TPC1 channel variants exist in plant families which may fine-tune vacuole excitability and adapt it to environmental settings of the particular ecological niche.}, language = {en} } @article{AdamDeimelPardoMedinaetal.2018, author = {Adam, Alexander and Deimel, Stephan and Pardo-Medina, Javier and Garc{\´i}a-Mart{\´i}nez, Jorge and Konte, Tilen and Lim{\´o}n, M. Carmen and Avalos, Javier and Terpitz, Ulrich}, title = {Protein activity of the \(Fusarium\) \(fujikuroi\) rhodopsins CarO and OpsA and their relation to fungus-plant interaction}, series = {International Journal of Molecular Sciences}, volume = {19}, journal = {International Journal of Molecular Sciences}, number = {1}, issn = {1422-0067}, doi = {10.3390/ijms19010215}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285125}, year = {2018}, abstract = {Fungi possess diverse photosensory proteins that allow them to perceive different light wavelengths and to adapt to changing light conditions in their environment. The biological and physiological roles of the green light-sensing rhodopsins in fungi are not yet resolved. The rice plant pathogen Fusarium fujikuroi exhibits two different rhodopsins, CarO and OpsA. CarO was previously characterized as a light-driven proton pump. We further analyzed the pumping behavior of CarO by patch-clamp experiments. Our data show that CarO pumping activity is strongly augmented in the presence of the plant hormone indole-3-acetic acid and in sodium acetate, in a dose-dependent manner under slightly acidic conditions. By contrast, under these and other tested conditions, the Neurospora rhodopsin (NR)-like rhodopsin OpsA did not exhibit any pump activity. Basic local alignment search tool (BLAST) searches in the genomes of ascomycetes revealed the occurrence of rhodopsin-encoding genes mainly in phyto-associated or phytopathogenic fungi, suggesting a possible correlation of the presence of rhodopsins with fungal ecology. In accordance, rice plants infected with a CarO-deficient F. fujikuroi strain showed more severe bakanae symptoms than the reference strain, indicating a potential role of the CarO rhodopsin in the regulation of plant infection by this fungus.}, language = {en} } @article{TrinksReinhardDrobnyetal.2021, author = {Trinks, Nora and Reinhard, Sebastian and Drobny, Matthias and Heilig, Linda and L{\"o}ffler, J{\"u}rgen and Sauer, Markus and Terpitz, Ulrich}, title = {Subdiffraction-resolution fluorescence imaging of immunological synapse formation between NK cells and A. fumigatus by expansion microscopy}, series = {Communications Biology}, volume = {4}, journal = {Communications Biology}, number = {1}, doi = {10.1038/s42003-021-02669-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-264996}, year = {2021}, abstract = {Expansion microscopy (ExM) enables super-resolution fluorescence imaging on standard microscopes by physical expansion of the sample. However, the investigation of interactions between different organisms such as mammalian and fungal cells by ExM remains challenging because different cell types require different expansion protocols to ensure identical, ideally isotropic expansion of both partners. Here, we introduce an ExM method that enables super-resolved visualization of the interaction between NK cells and Aspergillus fumigatus hyphae. 4-fold expansion in combination with confocal fluorescence imaging allows us to resolve details of cytoskeleton rearrangement as well as NK cells' lytic granules triggered by contact with an RFP-expressing A. fumigatus strain. In particular, subdiffraction-resolution images show polarized degranulation upon contact formation and the presence of LAMP1 surrounding perforin at the NK cell-surface post degranulation. Our data demonstrate that optimized ExM protocols enable the investigation of immunological synapse formation between two different species with so far unmatched spatial resolution.}, language = {en} } @article{PanzerZhangKonteetal.2021, author = {Panzer, Sabine and Zhang, Chong and Konte, Tilen and Br{\"a}uer, Celine and Diemar, Anne and Yogendran, Parathy and Yu-Strzelczyk, Jing and Nagel, Georg and Gao, Shiqiang and Terpitz, Ulrich}, title = {Modified Rhodopsins From Aureobasidium pullulans Excel With Very High Proton-Transport Rates}, series = {Frontiers in Molecular Biosciences}, volume = {8}, journal = {Frontiers in Molecular Biosciences}, issn = {2296-889X}, doi = {10.3389/fmolb.2021.750528}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-249248}, year = {2021}, abstract = {Aureobasidium pullulans is a black fungus that can adapt to various stressful conditions like hypersaline, acidic, and alkaline environments. The genome of A. pullulans exhibits three genes coding for putative opsins ApOps1, ApOps2, and ApOps3. We heterologously expressed these genes in mammalian cells and Xenopus oocytes. Localization in the plasma membrane was greatly improved by introducing additional membrane trafficking signals at the N-terminus and the C-terminus. In patch-clamp and two-electrode-voltage clamp experiments, all three proteins showed proton pump activity with maximal activity in green light. Among them, ApOps2 exhibited the most pronounced proton pump activity with current amplitudes occasionally extending 10 pA/pF at 0 mV. Proton pump activity was further supported in the presence of extracellular weak organic acids. Furthermore, we used site-directed mutagenesis to reshape protein functions and thereby implemented light-gated proton channels. We discuss the difference to other well-known proton pumps and the potential of these rhodopsins for optogenetic applications.}, language = {en} } @article{YuWolfThuseketal.2021, author = {Yu, Yidong and Wolf, Ann-Katrin and Thusek, Sina and Heinekamp, Thorsten and Bromley, Michael and Krappmann, Sven and Terpitz, Ulrich and Voigt, Kerstin and Brakhage, Axel A. and Beilhack, Andreas}, title = {Direct Visualization of Fungal Burden in Filamentous Fungus-Infected Silkworms}, series = {Journal of Fungi}, volume = {7}, journal = {Journal of Fungi}, number = {2}, issn = {2309-608X}, doi = {10.3390/jof7020136}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-228855}, year = {2021}, abstract = {Invasive fungal infections (IFIs) are difficult to diagnose and to treat and, despite several available antifungal drugs, cause high mortality rates. In the past decades, the incidence of IFIs has continuously increased. More recently, SARS-CoV-2-associated lethal IFIs have been reported worldwide in critically ill patients. Combating IFIs requires a more profound understanding of fungal pathogenicity to facilitate the development of novel antifungal strategies. Animal models are indispensable for studying fungal infections and to develop new antifungals. However, using mammalian animal models faces various hurdles including ethical issues and high costs, which makes large-scale infection experiments extremely challenging. To overcome these limitations, we optimized an invertebrate model and introduced a simple calcofluor white (CW) staining protocol to macroscopically and microscopically monitor disease progression in silkworms (Bombyx mori) infected with the human pathogenic filamentous fungi Aspergillus fumigatus and Lichtheimia corymbifera. This advanced silkworm A. fumigatus infection model could validate knockout mutants with either attenuated, strongly attenuated or unchanged virulence. Finally, CW staining allowed us to efficiently visualize antifungal treatment outcomes in infected silkworms. Conclusively, we here present a powerful animal model combined with a straightforward staining protocol to expedite large-scale in vivo research of fungal pathogenicity and to investigate novel antifungal candidates.}, language = {en} } @article{FeldbauerSchlegelWeissbeckeretal.2016, author = {Feldbauer, Katrin and Schlegel, Jan and Weissbecker, Juliane and Sauer, Frank and Wood, Phillip G. and Bamberg, Ernst and Terpitz, Ulrich}, title = {Optochemokine Tandem for Light-Control of Intracellular Ca\(^{2+}\)}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {10}, doi = {10.1371/journal.pone.0165344}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178921}, year = {2016}, abstract = {An optochemokine tandem was developed to control the release of calcium from endosomes into the cytosol by light and to analyze the internalization kinetics of G-protein coupled receptors (GPCRs) by electrophysiology. A previously constructed rhodopsin tandem was re-engineered to combine the light-gated Ca\(^{2+}\)-permeable cation channel Channelrhodopsin-2(L132C), CatCh, with the chemokine receptor CXCR4 in a functional tandem protein tCXCR4/CatCh. The GPCR was used as a shuttle protein to displace CatCh from the plasma membrane into intracellular areas. As shown by patch-clamp measurements and confocal laser scanning microscopy, heterologously expressed tCXCR4/CatCh was internalized via the endocytic SDF1/CXCR4 signaling pathway. The kinetics of internalization could be followed electrophysiologically via the amplitude of the CatCh signal. The light-induced release of Ca\(^{2+}\) by tandem endosomes into the cytosol via CatCh was visualized using the Ca\(^{2+}\)-sensitive dyes rhod2 and rhod2-AM showing an increase of intracellular Ca\(^{2+}\) in response to light.}, language = {en} } @article{WeissSchlegelTerpitzetal.2020, author = {Weiss, Esther and Schlegel, Jan and Terpitz, Ulrich and Weber, Michael and Linde, J{\"o}rg and Schmitt, Anna-Lena and H{\"u}nniger, Kerstin and Marischen, Lothar and Gamon, Florian and Bauer, Joachim and L{\"o}ffler, Claudia and Kurzai, Oliver and Morton, Charles Oliver and Sauer, Markus and Einsele, Hermann and Loeffler, Juergen}, title = {Reconstituting NK Cells After Allogeneic Stem Cell Transplantation Show Impaired Response to the Fungal Pathogen Aspergillus fumigatus}, series = {Frontiers in Immunology}, volume = {11}, journal = {Frontiers in Immunology}, issn = {1664-3224}, doi = {10.3389/fimmu.2020.02117}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212581}, year = {2020}, abstract = {Delayed natural killer (NK) cell reconstitution after allogeneic stem cell transplantation (alloSCT) is associated with a higher risk of developing invasive aspergillosis. The interaction of NK cells with the human pathogen Aspergillus (A.) fumigatus is mediated by the fungal recognition receptor CD56, which is relocated to the fungal interface after contact. Blocking of CD56 signaling inhibits the fungal mediated chemokine secretion of MIP-1α, MIP-1β, and RANTES and reduces cell activation, indicating a functional role of CD56 in fungal recognition. We collected peripheral blood from recipients of an allograft at defined time points after alloSCT (day 60, 90, 120, 180). NK cells were isolated, directly challenged with live A. fumigatus germ tubes, and cell function was analyzed and compared to healthy age and gender-matched individuals. After alloSCT, NK cells displayed a higher percentage of CD56\(^{bright}\)CD16\(^{dim}\) cells throughout the time of blood collection. However, CD56 binding and relocalization to the fungal contact side were decreased. We were able to correlate this deficiency to the administration of corticosteroid therapy that further negatively influenced the secretion of MIP-1α, MIP-1β, and RANTES. As a consequence, the treatment of healthy NK cells ex vivo with corticosteroids abrogated chemokine secretion measured by multiplex immunoassay. Furthermore, we analyzed NK cells regarding their actin cytoskeleton by Structured Illumination Microscopy (SIM) and flow cytometry and demonstrate an actin dysfunction of NK cells shown by reduced F-actin content after fungal co-cultivation early after alloSCT. This dysfunction remains until 180 days post-alloSCT, concluding that further actin-dependent cellular processes may be negatively influenced after alloSCT. To investigate the molecular pathomechansism, we compared CD56 receptor mobility on the plasma membrane of healthy and alloSCT primary NK cells by single-molecule tracking. The results were very robust and reproducible between tested conditions which point to a different molecular mechanism and emphasize the importance of proper CD56 mobility.}, language = {en} } @article{GoetzPanzerTrinksetal.2020, author = {G{\"o}tz, Ralph and Panzer, Sabine and Trinks, Nora and Eilts, Janna and Wagener, Johannes and Turr{\`a}, David and Di Pietro, Antonio and Sauer, Markus and Terpitz, Ulrich}, title = {Expansion Microscopy for Cell Biology Analysis in Fungi}, series = {Frontiers in Microbiology}, volume = {11}, journal = {Frontiers in Microbiology}, issn = {1664-302X}, doi = {10.3389/fmicb.2020.00574}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202569}, year = {2020}, abstract = {Super-resolution microscopy has evolved as a powerful method for subdiffraction-resolution fluorescence imaging of cells and cellular organelles, but requires sophisticated and expensive installations. Expansion microscopy (ExM), which is based on the physical expansion of the cellular structure of interest, provides a cheap alternative to bypass the diffraction limit and enable super-resolution imaging on a conventional fluorescence microscope. While ExM has shown impressive results for the magnified visualization of proteins and RNAs in cells and tissues, it has not yet been applied in fungi, mainly due to their complex cell wall. Here we developed a method that enables reliable isotropic expansion of ascomycetes and basidiomycetes upon treatment with cell wall degrading enzymes. Confocal laser scanning microscopy (CLSM) and structured illumination microscopy (SIM) images of 4.5-fold expanded sporidia of Ustilago maydis expressing fluorescent fungal rhodopsins and hyphae of Fusarium oxysporum or Aspergillus fumigatus expressing either histone H1-mCherry together with Lifeact-sGFP or mRFP targeted to mitochondria, revealed details of subcellular structures with an estimated spatial resolution of around 30 nm. ExM is thus well suited for cell biology studies in fungi on conventional fluorescence microscopes.}, language = {en} } @article{KonteTerpitzPlemenitaš2016, author = {Konte, Tilen and Terpitz, Ulrich and Plemenitaš, Ana}, title = {Reconstruction of the High-Osmolarity Glycerol (HOG) Signaling Pathway from the Halophilic Fungus Wallemia ichthyophaga in Saccharomyces cerevisiae}, series = {Frontiers in Microbiology}, journal = {Frontiers in Microbiology}, doi = {10.3389/fmicb.2016.00901}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165214}, year = {2016}, abstract = {The basidiomycetous fungus Wallemia ichthyophaga grows between 1.7 and 5.1 M NaCl and is the most halophilic eukaryote described to date. Like other fungi, W. ichthyophaga detects changes in environmental salinity mainly by the evolutionarily conserved high-osmolarity glycerol (HOG) signaling pathway. In Saccharomyces cerevisiae, the HOG pathway has been extensively studied in connection to osmotic regulation, with a valuable knock-out strain collection established. In the present study, we reconstructed the architecture of the HOG pathway of W. ichthyophaga in suitable S. cerevisiae knock-out strains, through heterologous expression of the W. ichthyophaga HOG pathway proteins. Compared to S. cerevisiae, where the Pbs2 (ScPbs2) kinase of the HOG pathway is activated via the SHO1 and SLN1 branches, the interactions between the W. ichthyophaga Pbs2 (WiPbs2) kinase and the W. ichthyophaga SHO1 branch orthologs are not conserved: as well as evidence of poor interactions between the WiSho1 Src-homology 3 (SH3) domain and the WiPbs2 proline-rich motif, the absence of a considerable part of the osmosensing apparatus in the genome of W. ichthyophaga suggests that the SHO1 branch components are not involved in HOG signaling in this halophilic fungus. In contrast, the conserved activation of WiPbs2 by the S. cerevisiae ScSsk2/ScSsk22 kinase and the sensitivity of W. ichthyophaga cells to fludioxonil, emphasize the significance of two-component (SLN1-like) signaling via Group III histidine kinase. Combined with protein modeling data, our study reveals conserved and non-conserved protein interactions in the HOG signaling pathway of W. ichthyophaga and therefore significantly improves the knowledge of hyperosmotic signal processing in this halophilic fungus.}, language = {en} }