@article{MortonFliesserDittrichetal.2014, author = {Morton, Charles Oliver and Fliesser, Mirjam and Dittrich, Marcus and M{\"u}ller, Tobias and Bauer, Ruth and Kneitz, Susanne and Hope, William and Rogers, Thomas Richard and Einsele, Hermann and L{\"o}ffler, J{\"u}rgen}, title = {Gene Expression Profiles of Human Dendritic Cells Interacting with Aspergillus fumigatus in a Bilayer Model of the Alveolar Epithelium/Endothelium Interface}, doi = {10.1371/journal.pone.0098279}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112893}, year = {2014}, abstract = {The initial stages of the interaction between the host and Aspergillus fumigatus at the alveolar surface of the human lung are critical in the establishment of aspergillosis. Using an in vitro bilayer model of the alveolus, including both the epithelium (human lung adenocarcinoma epithelial cell line, A549) and endothelium (human pulmonary artery epithelial cells, HPAEC) on transwell membranes, it was possible to closely replicate the in vivo conditions. Two distinct sub-groups of dendritic cells (DC), monocyte-derived DC (moDC) and myeloid DC (mDC), were included in the model to examine immune responses to fungal infection at the alveolar surface. RNA in high quantity and quality was extracted from the cell layers on the transwell membrane to allow gene expression analysis using tailored custom-made microarrays, containing probes for 117 immune-relevant genes. This microarray data indicated minimal induction of immune gene expression in A549 alveolar epithelial cells in response to germ tubes of A. fumigatus. In contrast, the addition of DC to the system greatly increased the number of differentially expressed immune genes. moDC exhibited increased expression of genes including CLEC7A, CD209 and CCL18 in the absence of A. fumigatus compared to mDC. In the presence of A. fumigatus, both DC subgroups exhibited up-regulation of genes identified in previous studies as being associated with the exposure of DC to A. fumigatus and exhibiting chemotactic properties for neutrophils, including CXCL2, CXCL5, CCL20, and IL1B. This model closely approximated the human alveolus allowing for an analysis of the host pathogen interface that complements existing animal models of IA.}, language = {en} } @article{CerezoEchevarriaKehlBeitzingeretal.2023, author = {Cerezo-Echevarria, Argi{\~n}e and Kehl, Alexandra and Beitzinger, Christoph and M{\"u}ller, Tobias and Klopfleisch, Robert and Aupperle-Lellbach, Heike}, title = {Evaluating the histologic grade of digital squamous cell carcinomas in dogs and copy number variation of KIT Ligand — a correlation study}, series = {Veterinary Sciences}, volume = {10}, journal = {Veterinary Sciences}, number = {2}, issn = {2306-7381}, doi = {10.3390/vetsci10020088}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304824}, year = {2023}, abstract = {Dark-haired dogs are predisposed to the development of digital squamous cell carcinoma (DSCC). This may potentially suggest an underlying genetic predisposition not yet completely elucidated. Some authors have suggested a potential correlation between the number of copies KIT Ligand (KITLG) and the predisposition of dogs to DSCC, containing a higher number of copies in those affected by the neoplasm. In this study, the aim was to evaluate a potential correlation between the number of copies of the KITLG and the histological grade of malignancy in dogs with DSCC. For this, 72 paraffin-embedded DSCCs with paired whole blood samples of 70 different dogs were included and grouped according to their haircoat color as follow: Group 0/unknown haircoat color (n = 11); Group 1.a/black non-Schnauzers (n = 15); group 1.b/black Schnauzers (n = 33); group 1.c/black and tan dogs (n = 7); group 2/tan animals (n = 4). The DSCCs were histologically graded. Additionally, KITLG Copy Number Variation (CNV) was determined by ddPCR. A significant correlation was observed between KITLG copy number and the histological grade and score value. This finding may suggest a possible factor for the development of canine DSCC, thus potentially having an impact on personalized veterinary oncological strategies and breeding programs.}, language = {en} } @article{MaierhoferFlunkertOshimaetal.2019, author = {Maierhofer, Anna and Flunkert, Julia and Oshima, Junko and Martin, George M. and Poot, Martin and Nanda, Indrajit and Dittrich, Marcus and M{\"u}ller, Tobias and Haaf, Thomas}, title = {Epigenetic signatures of Werner syndrome occur early in life and are distinct from normal epigenetic aging processes}, series = {Aging Cell}, volume = {18}, journal = {Aging Cell}, doi = {10.1111/acel.12995}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202733}, pages = {e12995}, year = {2019}, abstract = {Werner Syndrome (WS) is an adult-onset segmental progeroid syndrome. Bisulfite pyrosequencing of repetitive DNA families revealed comparable blood DNA methylation levels between classical (18 WRN-mutant) or atypical WS (3 LMNA-mutant and 3 POLD1-mutant) patients and age- and sex-matched controls. WS was not associated with either age-related accelerated global losses of ALU, LINE1, and α-satellite DNA methylations or gains of rDNA methylation. Single CpG methylation was analyzed with Infinium MethylationEPIC arrays. In a correspondence analysis, atypical WS samples clustered together with the controls and were clearly separated from classical WS, consistent with distinct epigenetic pathologies. In classical WS, we identified 659 differentially methylated regions (DMRs) comprising 3,656 CpG sites and 613 RefSeq genes. The top DMR was located in the HOXA4 promoter. Additional DMR genes included LMNA, POLD1, and 132 genes which have been reported to be differentially expressed in WRN-mutant/depleted cells. DMRs were enriched in genes with molecular functions linked to transcription factor activity and sequence-specific DNA binding to promoters transcribed by RNA polymerase II. We propose that transcriptional misregulation of downstream genes by the absence of WRN protein contributes to the variable premature aging phenotypes of WS. There were no CpG sites showing significant differences in DNA methylation changes with age between WS patients and controls. Genes with both WS- and age-related methylation changes exhibited a constant offset of methylation between WRN-mutant patients and controls across the entire analyzed age range. WS-specific epigenetic signatures occur early in life and do not simply reflect an acceleration of normal epigenetic aging processes.}, language = {en} } @article{HaertleElHajjDittrichetal.2017, author = {Haertle, Larissa and El Hajj, Nady and Dittrich, Marcus and M{\"u}ller, Tobias and Nanda, Indrajit and Lehnen, Harald and Haaf, Thomas}, title = {Epigenetic signatures of gestational diabetes mellitus on cord blood methylation}, series = {Clinical Epigenetics}, volume = {9}, journal = {Clinical Epigenetics}, number = {28}, doi = {10.1186/s13148-017-0329-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159459}, year = {2017}, abstract = {Background: Intrauterine exposure to gestational diabetes mellitus (GDM) confers a lifelong increased risk for metabolic and other complex disorders to the offspring. GDM-induced epigenetic modifications modulating gene regulation and persisting into later life are generally assumed to mediate these elevated disease susceptibilities. To identify candidate genes for fetal programming, we compared genome-wide methylation patterns of fetal cord bloods (FCBs) from GDM and control pregnancies. Methods and results: Using Illumina's 450K methylation arrays and following correction for multiple testing, 65 CpG sites (52 associated with genes) displayed significant methylation differences between GDM and control samples. Four candidate genes, ATP5A1, MFAP4, PRKCH, and SLC17A4, from our methylation screen and one, HIF3A, from the literature were validated by bisulfite pyrosequencing. The effects remained significant after adjustment for the confounding factors maternal BMI, gestational week, and fetal sex in a multivariate regression model. In general, GDM effects on FCB methylation were more pronounced in women with insulin-dependent GDM who had a more severe metabolic phenotype than women with dietetically treated GDM. Conclusions: Our study supports an association between maternal GDM and the epigenetic status of the exposed offspring. Consistent with a multifactorial disease model, the observed FCB methylation changes are of small effect size but affect multiple genes/loci. The identified genes are primary candidates for transmitting GDM effects to the next generation. They also may provide useful biomarkers for the diagnosis, prognosis, and treatment of adverse prenatal exposures.}, language = {en} } @article{ElHajjDittrichBoecketal.2016, author = {El Hajj, Nady and Dittrich, Marcus and B{\"o}ck, Julia and Kraus, Theo F. J. and Nanda, Indrajit and M{\"u}ller, Tobias and Seidmann, Larissa and Tralau, Tim and Galetzka, Danuta and Schneider, Eberhard and Haaf, Thomas}, title = {Epigenetic dysregulation in the developing Down syndrome cortex}, series = {Epigenetics}, volume = {11}, journal = {Epigenetics}, number = {8}, doi = {10.1080/15592294.2016.1192736}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-191239}, pages = {563-578}, year = {2016}, abstract = {Using Illumina 450K arrays, 1.85\% of all analyzed CpG sites were significantly hypermethylated and 0.31\% hypomethylated in fetal Down syndrome (DS) cortex throughout the genome. The methylation changes on chromosome 21 appeared to be balanced between hypo- and hyper-methylation, whereas, consistent with prior reports, all other chromosomes showed 3-11times more hyper- than hypo-methylated sites. Reduced NRSF/REST expression due to upregulation of DYRK1A (on chromosome 21q22.13) and methylation of REST binding sites during early developmental stages may contribute to this genome-wide excess of hypermethylated sites. Upregulation of DNMT3L (on chromosome 21q22.4) could lead to de novo methylation in neuroprogenitors, which then persists in the fetal DS brain where DNMT3A and DNMT3B become downregulated. The vast majority of differentially methylated promoters and genes was hypermethylated in DS and located outside chromosome 21, including the protocadherin gamma (PCDHG) cluster on chromosome 5q31, which is crucial for neural circuit formation in the developing brain. Bisulfite pyrosequencing and targeted RNA sequencing showed that several genes of PCDHG subfamilies A and B are hypermethylated and transcriptionally downregulated in fetal DS cortex. Decreased PCDHG expression is expected to reduce dendrite arborization and growth in cortical neurons. Since constitutive hypermethylation of PCDHG and other genes affects multiple tissues, including blood, it may provide useful biomarkers for DS brain development and pharmacologic targets for therapeutic interventions.}, language = {en} } @article{FlorenKruegerMuelleretal.2015, author = {Floren, Andreas and Kr{\"u}ger, Dirk and M{\"u}ller, Tobias and Dittrich, Marcus and Rudloff, Renate and Hoppe, Bj{\"o}rn and Linsenmair, Karl Eduard}, title = {Diversity and interactions of wood-inhabiting fungi and beetles after deadwood enrichment}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {11}, doi = {10.1371/journal.pone.0143566}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145129}, pages = {e0143566}, year = {2015}, abstract = {Freshly cut beech deadwood was enriched in the canopy and on the ground in three cultural landscapes in Germany (Swabian Alb, Hainich-Dun, Schorfheide-Chorin) in order to analyse the diversity, distribution and interaction of wood-inhabiting fungi and beetles. After two years of wood decay 83 MOTUs (Molecular Operational Taxonomic Units) from 28 wood samples were identified. Flight Interception Traps (FITs) installed adjacent to the deadwood enrichments captured 29.465 beetles which were sorted to 566 species. Geographical 'region' was the main factor determining both beetle and fungal assemblages. The proportions of species occurring in all regions were low. Statistic models suggest that assemblages of both taxa differed between stratum and management praxis but their strength varied among regions. Fungal assemblages in Hainich-Dun, for which the data was most comprehensive, discriminated unmanaged from extensively managed and age-class forests (even-aged timber management) while canopy communities differed not from those near the ground. In contrast, the beetle assemblages at the same sites showed the opposite pattern. We pursued an approach in the search for fungus-beetle associations by computing cross correlations and visualize significant links in a network graph. These correlations can be used to formulate hypotheses on mutualistic relationships for example in respect to beetles acting as vectors of fungal spores.}, language = {en} } @article{FlorenLinsenmairMueller2022, author = {Floren, Andreas and Linsenmair, Karl Eduard and M{\"u}ller, Tobias}, title = {Diversity and functional relevance of canopy arthropods in Central Europe}, series = {Diversity}, volume = {14}, journal = {Diversity}, number = {8}, issn = {1424-2818}, doi = {10.3390/d14080660}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-285924}, year = {2022}, abstract = {Although much is known about the ecology and functional importance of canopy arthropods in temperate forests, few studies have tried to assess the overall diversity and investigate the composition and dynamics of tree-specific communities. This has impeded a deeper understanding of the functioning of forests, and of how to maintain system services. Here, we present the first comprehensive data of whole arthropod communities, collected by insecticidal knockdown (fogging) from 1159 trees in 18 study areas in Central Europe during the last 25 years. The data includes 3,253,591 arthropods from 32 taxa (order, suborder, family) collected on 24 tree species from 18 genera. Fogging collects free-living, ectophytic arthropods in approximately the same number as they occur in the trees. To our knowledge, these are the most comprehensive data available today on the taxonomic composition of arboreal fauna. Assigning all arthropods to their feeding guild provided a proxy of their functional importance. The data showed that the canopy communities were regularly structured, with a clear dominance hierarchy comprised of eight 'major taxa' that represented 87\% of all arthropods. Despite significant differences in the proportions of taxa on deciduous and coniferous trees, the composition of the guilds was very similar. The individual tree genera, on the other hand, showed significant differences in guild composition, especially when different study areas and years were compared, whereas tree-specific traits, such as tree height, girth in breast height or leaf cover, explained little of the overall variance. On the ordinal level, guild composition also differed significantly between managed and primary forests, with a simultaneous low within-group variability, indicating that management is a key factor determining the distribution of biodiversity and guild composition.}, language = {en} } @article{GrassingerFlorenMuelleretal.2021, author = {Grassinger, Julia Maria and Floren, Andreas and M{\"u}ller, Tobias and Cerezo-Echevarria, Argi{\~n}e and Beitzinger, Christoph and Conrad, David and T{\"o}rner, Katrin and Staudacher, Marlies and Aupperle-Lellbach, Heike}, title = {Digital lesions in dogs: a statistical breed analysis of 2912 cases}, series = {Veterinary Sciences}, volume = {8}, journal = {Veterinary Sciences}, number = {7}, issn = {2306-7381}, doi = {10.3390/vetsci8070136}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242690}, year = {2021}, abstract = {Breed predispositions to canine digital neoplasms are well known. However, there is currently no statistical analysis identifying the least affected breeds. To this end, 2912 canine amputated digits submitted from 2014-2019 to the Laboklin GmbH \& Co. KG for routine diagnostics were statistically analyzed. The study population consisted of 155 different breeds (most common: 634 Mongrels, 411 Schnauzers, 197 Labrador Retrievers, 93 Golden Retrievers). Non-neoplastic processes were present in 1246 (43\%), tumor-like lesions in 138 (5\%), and neoplasms in 1528 cases (52\%). Benign tumors (n = 335) were characterized by 217 subungual keratoacanthomas, 36 histiocytomas, 35 plasmacytomas, 16 papillomas, 12 melanocytomas, 9 sebaceous gland tumors, 6 lipomas, and 4 bone tumors. Malignant neoplasms (n = 1193) included 758 squamous cell carcinomas (SCC), 196 malignant melanomas (MM), 76 soft tissue sarcomas, 52 mast cell tumors, 37 non-specified sarcomas, 29 anaplastic neoplasms, 24 carcinomas, 20 bone tumors, and 1 histiocytic sarcoma. Predisposed breeds for SCC included the Schnauzer (log OR = 2.61), Briard (log OR = 1.78), Rottweiler (log OR = 1.54), Poodle (log OR = 1.40), and Dachshund (log OR = 1.30). Jack Russell Terriers (log OR = -2.95) were significantly less affected by SCC than Mongrels. Acral MM were significantly more frequent in Rottweilers (log OR = 1.88) and Labrador Retrievers (log OR = 1.09). In contrast, Dachshunds (log OR = -2.17), Jack Russell Terriers (log OR = -1.88), and Rhodesian Ridgebacks (log OR = -1.88) were rarely affected. This contrasted with the well-known predisposition of Dachshunds and Rhodesian Ridgebacks to oral and cutaneous melanocytic neoplasms. Further studies are needed to explain the underlying reasons for breed predisposition or "resistance" to the development of specific acral tumors and/or other sites.}, language = {en} } @article{SchneiderDittrichBoecketal.2016, author = {Schneider, Eberhard and Dittrich, Marcus and B{\"o}ck, Julia and Nanda, Indrajit and M{\"u}ller, Tobias and Seidmann, Larissa and Tralau, Tim and Galetzka, Danuta and El Hajj, Nady and Haaf, Thomas}, title = {CpG sites with continuously increasing or decreasing methylation from early to late human fetal brain development}, series = {Gene}, volume = {592}, journal = {Gene}, number = {1}, doi = {10.1016/j.gene.2016.07.058}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186936}, pages = {110-118}, year = {2016}, abstract = {Normal human brain development is dependent on highly dynamic epigenetic processes for spatial and temporal gene regulation. Recent work identified wide-spread changes in DNA methylation during fetal brain development. We profiled CpG methylation in frontal cortex of 27 fetuses from gestational weeks 12-42, using Illumina 450K methylation arrays. Sites showing genome-wide significant correlation with gestational age were compared to a publicly available data set from gestational weeks 3-26. Altogether, we identified 2016 matching developmentally regulated differentially methylated positions (m-dDMPs): 1767 m-dDMPs were hypermethylated and 1149 hypomethylated during fetal development. M-dDMPs are underrepresented in CpG islands and gene promoters, and enriched in gene bodies. They appear to cluster in certain chromosome regions. M-dDMPs are significantly enriched in autism-associated genes and CpGs. Our results promote the idea that reduced methylation dynamics during fetal brain development may predispose to autism. In addition, m-dDMPs are enriched in genes with human-specific brain expression patterns and/or histone modifications. Collectively, we defined a subset of dDMPs exhibiting constant methylation changes from early to late pregnancy. The same epigenetic mechanisms involving methylation changes in cis-regulatory regions may have been adopted for human brain evolution and ontogeny.}, language = {en} } @article{UrbanRemmeleDittrichetal.2020, author = {Urban, Lara and Remmele, Christian W. and Dittrich, Marcus and Schwarz, Roland F. and M{\"u}ller, Tobias}, title = {covRNA: discovering covariate associations in large-scale gene expression data}, series = {BMC Reserach Notes}, volume = {13}, journal = {BMC Reserach Notes}, doi = {10.1186/s13104-020-04946-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229258}, year = {2020}, abstract = {Objective The biological interpretation of gene expression measurements is a challenging task. While ordination methods are routinely used to identify clusters of samples or co-expressed genes, these methods do not take sample or gene annotations into account. We aim to provide a tool that allows users of all backgrounds to assess and visualize the intrinsic correlation structure of complex annotated gene expression data and discover the covariates that jointly affect expression patterns. Results The Bioconductor package covRNA provides a convenient and fast interface for testing and visualizing complex relationships between sample and gene covariates mediated by gene expression data in an entirely unsupervised setting. The relationships between sample and gene covariates are tested by statistical permutation tests and visualized by ordination. The methods are inspired by the fourthcorner and RLQ analyses used in ecological research for the analysis of species abundance data, that we modified to make them suitable for the distributional characteristics of both, RNA-Seq read counts and microarray intensities, and to provide a high-performance parallelized implementation for the analysis of large-scale gene expression data on multi-core computational systems. CovRNA provides additional modules for unsupervised gene filtering and plotting functions to ensure a smooth and coherent analysis workflow.}, language = {en} }