@phdthesis{AppeltMenzel2016, author = {Appelt-Menzel, Antje}, title = {Etablierung und Qualifizierung eines humanen Blut-Hirn-Schranken-Modells unter Verwendung von induziert pluripotenten und multipotenten Stammzellen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134646}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Die Blut-Hirn-Schranke (BHS) stellt eine der dichtesten und wichtigsten Barrieren zwischen Blutzirkulation und Zentralnervensystem (ZNS) dar. Sie besteht aus spezialisierten Endothelzellen, welche die zerebralen Kapillaren auskleiden und durch sehr dichte Tight Junctions (TJs) miteinander verbunden sind. Weitere Komponenten der dynamischen Blut-Hirn-Schrankenbarriere stellen Perizyten, Astrozyten, Neurone und Mikrogliazellen dar, welche zusammen mit der extrazellul{\"a}ren Matrix der Basalmembran der Gehirnkapillaren und den zuvor genannten Endothelzellen ein komplexes regulatorisches System, die so genannte neurovaskul{\"a}re Einheit bilden (Hawkins und Davis 2005). Die Hauptfunktionen der BHS lassen sich in drei Untergruppen untergliedern, die physikalische, metabolische und Transport-Barriere (Neuhaus und Noe 2010). Haupts{\"a}chlich dient die BHS der Aufrechterhaltung der Hom{\"o}ostase des ZNS und dem Schutz vor neurotoxischen Substanzen sowie Pathogenen, wie Bakterien und Viren. Zudem ist sie auch f{\"u}r die Versorgung der Neuronen mit N{\"a}hrstoffen und regulierenden Substanzen sowie den Efflux von Stoffwechselendprodukten des ZNS zur{\"u}ck ins Blut verantwortlich. F{\"u}r die Entwicklung von Medikamenten zur Behandlung von neurodegenerativen Erkrankungen, wie Morbus Alzheimer, Morbus Parkinson und Multiple Sklerose oder Gehirntumoren, stellt die Dichtigkeit der BHS gegen{\"u}ber Substanzen und die hohe metabolische Aktivit{\"a}t der Endothelzellen aber ein großes Problem dar. Viele Medikamente sind nicht in der Lage in ausreichender Konzentration die BHS zu {\"u}berwinden, um an ihren Wirkort zu gelangen oder werden vor dem Transport metabolisiert und die Wirksamkeit dadurch eingeschr{\"a}nkt. Weiterhin spielen auch Defekte der BHS eine entscheidende Rolle in der Beeinflussung der Pathogenese vieler ZNS-Erkrankungen. Aufgrund des hohen Bedarfs an geeigneten Testsystemen in der Grundlagen- sowie pr{\"a}klinischen Forschung f{\"u}r Medikamentenentwicklung und Infektionsstudien wurden eine Vielzahl unterschiedlicher BHS-Modelle entwickelt. Neben in silico-, azellul{\"a}ren in vitro- und in vivo-Modellen sind auch zahlreiche zellbasierte Modelle der BHS entwickelt worden. Standardisierte Modelle auf Basis immortalisierter Zelllinien jedoch weisen nur eine inhomogene TJ-Expression auf und verf{\"u}gen meist {\"u}ber eine geringe Barriereintegrit{\"a}t, erfasst {\"u}ber transendotheliale elektrische Widerst{\"a}nde (TEER) unter 150 · cm2 (Deli et al. 2005). Im Vergleich dazu wurden in Tierexperimenten TEER-Werte von mehr als 1500 · cm2 an der BHS gemessen (Butt et al. 1990; Crone und Olesen 1982). Die Verf{\"u}gbarkeit humaner prim{\"a}rer BHS-Zellen ist sehr limitiert und ihr Einsatz nicht nur im Hinblick auf ethische Aspekte bedenklich. Humane Gehirnzellen k{\"o}nnen z. B. aus Biopsie- oder Autopsiematerial von Patienten mit Epilepsie oder Gehirntumoren isoliert werden. Allerdings besteht hier das Risiko, dass die isolierten Zellen krankheitsbedingt ver{\"a}ndert sind, was die Eigenschaften der BHS-Modelle erheblich beeinflussen kann. Eine Alternative, die diese Probleme umgeht, ist die Verwendung von humanen induziert pluripotenten Stammzellen (hiPSCs), um standardisierte humane BHS-Modelle unter reproduzierbaren Bedingungen bereitzustellen. Im Rahmen dieser Arbeit ist es gelungen, hiPSCs in vitro nach etablierten und standardisierten Methoden in Endothelzellen der BHS, neurale Stammzellen (hiPS-NSCs) sowie Astrozyten (hiPS-A) zu differenzieren (Lippmann et al. 2012; Lippmann et al. 2014; Wilson et al. 2015; Yan et al. 2013;Reinhardt et al. 2013) und zum Aufbau der Modelle einzusetzen. Die Endothelzellen wurden mit Hilfe protein- und genbasierter Nachweismethoden auf das Vorhandensein von endothelzellspezifischen TJ-Markern sowie spezifischen Transportern untersucht und funktionell charakterisiert. Die Kryokonservierung der hiPS-EC-Progenitoren, die im Rahmen der vorliegenden Arbeit entwickelt wurde, erm{\"o}glicht eine gr{\"o}ßere r{\"a}umliche und zeitliche Flexibilit{\"a}t beim Arbeiten mit den stammzellbasierten Modellen sowie das Anlegen standardisierter Zellbanken. Weiterhin wurden multipotente NSCs aus fetalen Gehirnbiopsien isoliert (fNSCs) und als Kontrollkulturen zu den hiPS-NSCs f{\"u}r den Aufbau von BHS-Modellen eingesetzt. Mit dem Ziel die in vivo-BHS bestm{\"o}glich zu imitieren und die Modelleigenschaften zu optimieren, wurde ein Set aus zehn unterschiedlichen BHS-Modellen basierend auf prim{\"a}ren Zellen, hiPSCs und fNSCs analysiert. Der Aufbau der BHS-Modelle erfolgte unter Verwendung von Transwellsystemen. Durch die systematische Untersuchung des Einflusses der unterschiedlichen Zelltypen der neurovaskul{\"a}ren Einheit auf die Barriereintegrit{\"a}t und Genexpression des BHS-Endothels, konnten die Quadrupel-Kulturen mit Perizyten, Astrozyten und hiPS-NSCs als die Kultur mit den physiologischsten Eigenschaften identifiziert werden. Auf Grund der signifikant erh{\"o}hten TEER-Werte von bis zu 2500 · cm2 und einer um mindestens 1,5-fachen Steigerung der Genexpression BHSrelevanter Transporter und TJ-Molek{\"u}le gegen{\"u}ber den Monokulturen, wurden diese Modelle f{\"u}r weiterf{\"u}hrende Studien ausgew{\"a}hlt. Das Vorhandensein eines komplexen, in vivo-{\"a}hnlichen TJ-Netzwerkes, bestehend aus Occludin, Claudin 1, 3, 4 und 5, konnte mittels quantitativer Realtime-PCR, Western Blot sowie ultrastruktureller Analyse in der Gefrierbruch- und Raster-Elektronenmikroskopie nachgewiesen werden. Neben der Begrenzung der parazellul{\"a}ren Permeabilit{\"a}t, welche {\"u}ber die geringe Permeation von FITC-Dextran (4 kDa und 40 kDa), Fluoreszein und Lucifer Yellow nachgewiesen wurde, stellt die BHS ebenfalls eine Barriere f{\"u}r den transzellul{\"a}ren Transport von Substanzen dar. Eine Beurteilung der Modelle hinsichtlich der Qualifikation f{\"u}r die Nutzung im Wirkstoffscreening wurde mit Hilfe von Transportversuchen unter dem Einsatz von BHS-relevanten Referenzsubstanzen durchgef{\"u}hrt. Die Klassifikation der Testsubstanzen erfolgte analog ihrer Permeationsgeschwindigkeiten: Diazepam und Koffein gelten als schnell transportierte Wirkstoffe, Ibuprofen, Celecoxib und Diclofenac werden mit einer mittleren Geschwindigkeit {\"u}ber die BHS transportiert und Loratadin sowie Rhodamin 123 sind langsam permeierende Substanzen. Innerhalb der Versuche mit den Quadrupelkulturen wurde diese Reihenfolge best{\"a}tigt, lediglich f{\"u}r Koffein wurde ein signifikant niedrigerer Permeationskoeffizient verglichen mit der Monokultur erzielt. Der Einsatz der hiPSC-Technologie erm{\"o}glicht es zudem, aus einer Stammzelllinie große Mengen an humanen somatischen Zelltypen zu generieren und f{\"u}r gezielte Anwendungen bereitzustellen. Es konnte im Rahmen dieser Arbeit gezeigt werden, dass mit Hilfe eines eigens f{\"u}r diese Zwecke konstruierten R{\"u}hrreaktorsystems eine reproduzierbare Expansion der hiPSCs unter definierten Bedingungen erm{\"o}glicht wurde. Basierend auf dieser Grundlage ist nun ein Hochdurchsatz-Screening von Medikamenten denkbar. Die in dieser Arbeit pr{\"a}sentierten Daten belegen die Etablierung eines stammzellbasierten in vitro- Quadrupelmodels der humanen BHS, welches {\"u}ber in vivo-{\"a}hnliche Eigenschaften verf{\"u}gt. Die Anforderungen, die an humane BHS-Modelle gestellt werden, wie die Reproduzierbarkeit der Ergebnisse, eine angemessene Charakterisierung, welche die Untersuchung der Permeabilit{\"a}t von Referenzsubstanzen einschließt, die Analyse der Expression von BHS-relevanten Transportermolek{\"u}len sowie die solide und physiologische Morphologie der Zellen, wurden erf{\"u}llt. Das etablierte BHS-Modell kann in der Pharmaindustrie f{\"u}r die Entwicklung von Medikamenten eingesetzt werden. Ausreichend qualifizierte Modelle k{\"o}nnen hier in der pr{\"a}klinischen Forschung genutzt werden, um Toxizit{\"a}ts- und Transportstudien an neu entwickelten Substanzen durchzuf{\"u}hren und eine bessere in vitro-in vivo-Korrelation der Ergebnisse zu erm{\"o}glichen oder Mechanismen zu entwickeln, um die BHS-Barriere gezielt zu {\"u}berwinden.}, subject = {Blut-Hirn-Schranke}, language = {de} } @phdthesis{Andronic2014, author = {Andronic, Joseph}, title = {Volumenregulatorische Transportwege von anorganischen und organischen Osmolyten in S{\"a}ugetierzellen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-103255}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Die Aufrechterhaltung des Zellvolumens unter variablen osmotischen Bedingungen stellt f{\"u}r nahezu alle tierischen Zellen eine essenzielle Aufgabe dar. Um regulatorische Volumenanpassungen vorzunehmen besitzen sie daher effektive Mechanismen, mit deren Hilfe der zellul{\"a}re Gehalt an organischen und anorganischen Osmolyten erh{\"o}ht (= regulatorische Volumenzunahme; RVI) oder gesenkt (= regulatorische Volumenabnahme; RVD) werden kann. Trotz langj{\"a}hriger Forschung auf diesem Gebiet konnten die hieran beteiligten Transportwege f{\"u}r Osmolyte bisher nur unvollst{\"a}ndig aufgekl{\"a}rt werden. Insbesondere bei T-Lymphozyten sind wichtige Zellfunktionen wie die Proliferation, Migration und die T-Zell-Aktivierung eng mit volumenregulatorischen Mechanismen verbunden. Bei all diesen Prozessen sind u. a. unterschiedliche Kaliumkan{\"a}le beteiligt, die insbesondere f{\"u}r die pharmakologische Manipulation von Immunsystemprozessen von wissenschaftlichem Interesse sind. Bisherige Modelle der hypotonen Volumenregulation von T-Lymphozyten ber{\"u}cksichtigen lediglich den spannungsabh{\"a}ngigen KV1.3 sowie den Ca2+-aktivierten IKCa1-Kanal, die zur Klasse der 6TM/P-K+-Kan{\"a}le geh{\"o}ren. Im ersten Teil der vorliegenden Arbeit wurde eine potentielle Rolle von k{\"u}rzlich entdeckten Zwei-Poren Dom{\"a}nen Kaliumkan{\"a}len (K2P) am RVD von murinen und humanen prim{\"a}ren CD4+-T-Lymphozyten untersucht. In einem kombinierten genetischen und pharmakologischen Ansatz mittels knockout-Tiermodellen und dem Einsatz kanalspezifischer Inhibitoren konnte mithilfe zellvolumetrischer Analysen gezeigt werden, dass die K2P-Vertreter TASK1, TASK2, TASK3 und TRESK maßgeblich am schwellungsaktivierten Efflux von K+ beteiligt sind. Beurteilt an den Ergebnissen dieser Untersuchung sind der spannungsabh{\"a}ngige TASK2- und der Ca2+-aktivierte TRESK-Kanal f{\"u}r die hypotone Volumenregulation in T-Zellen deutlich bedeutender als TASK1 und TASK3. Der Beitrag der Kan{\"a}le TASK2 und TRESK am RVD-Prozess war {\"u}ber dies vergleichbar mit dessen des bisher bekannten KV1.3-Kanals. In dieser Arbeit wurde damit erstmals eine Beteiligung der K2P-Kan{\"a}le am RVD muriner und humaner CD4+-Lymphozyten identifiziert. Aufgrund der engen Verbindung zwischen T-Zell-Funktion und der Volumenregulation k{\"o}nnen Zwei-Poren Dom{\"a}nen K+-Kan{\"a}le damit in den engeren Kreis potentieller immunmodulierende Angriffspunkte aufgefasst werden. Im zweiten und umfangreicheren Teil dieser Arbeit wurden dar{\"u}ber hinaus die schwellungsaktivierten Transportwege f{\"u}r organische Osmolyte (small organic osmolytes; SOOs) untersucht. SOOs stellen chemisch inerte Verbindungen dar, zu denen vor allem Polyole (Sorbitol, myo-Inositol), Methylamine (Betain, α-Glycerophosphocholin) sowie Aminos{\"a}uren (α- bzw. β-Alanin und Prolin) und deren Derivate (Taurin) z{\"a}hlen. Da SOOs weder die zellul{\"a}re Struktur noch die Funktion von Makromolek{\"u}len beeintr{\"a}chtigen, sind sie wichtige Instrumente der Volumenregulation, die sich in hohen Konzentrationen im Zytosol nahezu aller Zellen wiederfinden. Werden tierische Zellen mit hypotonen Bedingungen konfrontiert, dann ist bei nahezu allen Zellen die Freisetzung organischer Osmolyte zu beobachten, wodurch die zellul{\"a}re Osmolarit{\"a}t unabh{\"a}ngig von Elektrolyten angepasst werden kann. Trotz der wichtigen Funktion der SOOs in der Osmoregulation tierischer Zellen konnte die molekulare Identit{\"a}t beteiligter Effluxwege (Kan{\"a}le bzw. Transporter) bisher nicht aufgekl{\"a}rt werden. Ungeachtet der molekularen Identit{\"a}t der SOO-Effluxwege war es aus zahlreichen biotechnologischen Anwendungen zu Beginn dieser Arbeit bekannt, dass die schwellungsaktivierten Transportwege f{\"u}r organische Osmolyte eine gr{\"o}ßenselektive Permeabilit{\"a}t f{\"u}r eine Reihe monomerer Zucker und verwandter Verbindungen aufweisen. Um diese Gr{\"o}ßenselektivit{\"a}t n{\"a}her zu charakterisieren, wurde im ersten Schritt die schwellungsaktivierte Membranpermeabilit{\"a}t f{\"u}r eine Reihe strukturell homogener Polyethylenglykole unterschiedlicher Polymerl{\"a}nge (PEG200-1500; hydrodynamische Radien zwischen ~0,5-1,5 nm) unter iso- und hypotonen Bedingungen in Jurkat-Lymphozyten untersucht. Unter milden hypotonen Bedingungen (200 mOsm) war die Plasmamembran der untersuchten Lymphozyten f{\"u}r PEG300-1500 undurchl{\"a}ssig, was aus der F{\"a}higkeit der Zellen zur hypotonen Volumenregulation geschlossen werden konnte. Dar{\"u}ber hinaus wurde RVD in stark hypotonen L{\"o}sungen (100 mOsm) mit PEG600-1500 beobachtet, w{\"a}hrend PEG300-400 unter vergleichbaren osmotischen Bedingungen die Volumenregulation der Zellen inhibierten. Dieses Ergebnis deutet darauf hin, dass starkes hypotones Zellschwellen der Lymphozyten zur Permeabilisierung der Plasmamembran f{\"u}r PEG300-400, nicht jedoch f{\"u}r PEG600-1500, f{\"u}hrt. Anhand der hydrodynamischen Radien Rh der verwendeten PEGs konnte ein cutoff-Radius von ~0,74 nm f{\"u}r schwellungsaktivierte Transportwege organischer Osmolyte bestimmt werden. Da diese schwellungsaktivierten Transportwege vielf{\"a}ltig f{\"u}r Zellbeladungstechniken verwendet werden, k{\"o}nnte dieses Ergebnis f{\"u}r zahlreiche biotechnologische und biomedizinische Anwendungen von Interesse sein. Im zweiten Schritt wurde der Versuch unternommen, potentielle Transportwege f{\"u}r organische Osmolyte im RVD-Prozess molekular zu identifizieren. Da es grundlegend ungekl{\"a}rt war, wie viele unterschiedliche Transporter bzw. Kan{\"a}le am Efflux der zahlreichen organischen Osmolyte beteiligt sind, erfolgte zun{\"a}chst die vergleichende Analyse des schwellungsaktivierten Membrantransports strukturell verschiedener SOOs einschließlich der Aminosulfons{\"a}ure Taurin und des Polyols myo-Inositol. Hierbei wurde erstmals gezeigt, dass die schwellungsaktivierten Transportwege f{\"u}r Taurin und myo-Inositol deutlich unterschiedliche Aktivit{\"a}tsprofile aufweisen. W{\"a}hrend der Taurintransport bereits unter milden hypotonen Bedingungen, d.h. nach einer geringen Absenkung der Osmolalit{\"a}t von 300 auf ~230 mOsm, aktiviert wurde, erfolgte die Aktivierung der Membranpermeabilit{\"a}t f{\"u}r myo-Inositol bei einer viel niedrigeren Osmolalit{\"a}t von ~150 mOsm. Dar{\"u}ber hinaus wiesen die beiden Transportwege unter vergleichbarem hypotonen Stress von 100 mOsm deutlich unterschiedliche Aktivit{\"a}tsdauern auf (Transport von Taurin ~95 min und myo-Inositol ~40 min). Somit deuteten diese Ergebnisse erstmals auf substrat-spezifische Transportwege f{\"u}r SOOs hin, die voneinander stark abweichende osmotische Aktivierungsprofile besitzen. Als aussichtsreiche Kandidaten f{\"u}r diese Transportwege wurden zwei Mitglieder der Gruppe der Solute Carrier (SLC) untersucht, die klare {\"U}bereinstimmungen mit den gesuchten Transportern f{\"u}r SOOs aufweisen. Daher wurde im Weiteren eine RVD-Beteiligung dieser Transportergruppe mit einer Kombination aus molekularbiologischer und konventioneller bzw. hochaufgel{\"o}ster mikroskopischen Techniken {\"u}berpr{\"u}ft. Die semiqantitativen RT-PCR-Ergebnisse dieser Arbeit zeigen dabei, dass die Gentranskription der potentiellen SOO-Transporter SLC5A3 und SLC6A6 in den untersuchten Zelllinien Jurkat, HEK wie auch HepG2-Zellen durch hypotone Bedingungen deutlich verst{\"a}rkt wird. Hierbei nimmt der zellul{\"a}re mRNA-Gehalt der Gene SLC5A3 zwischen 20-60\% und SLC6A6 um 30-100\% innerhalb von 10-20 min zu, was auf eine potentielle RVD-Beteiligung von SLC-Transportern hindeutet. Ausgehend von diesem Ergebnis wurde daraufhin die zellul{\"a}re Lokalisation des SLC5A3-Transporters unter isotonen und hypotonen Bedingungen mikroskopisch untersucht. Wie anhand der konfokalen lasermikroskopischen Untersuchung zu erkennen ist, findet unter hypotoner Stimulation eine zellul{\"a}re Umverteilung des mit EGFP fluoreszenzmarkierten Proteins SLC5A3 statt. Innerhalb von 10 min wird der Transporter dabei von intrazellul{\"a}ren Regionen in Richtung Plasmamembran verlagert. Dar{\"u}ber hinaus konnte mit Hilfe der hochaufl{\"o}senden Mikroskopie-Technik dSTORM gezeigt werden, dass der Transporter SLC5A3 unter hypotoner Stimulation verst{\"a}rkt mit der Plasmamembran assoziiert vorliegt. Diese verst{\"a}rkte Membranassoziation des SLC5A3-Proteins deutet damit auf einen schwellungsinduzierten exozytotischen Einbau des Transporters hin. Die Ergebnisse dieser Arbeit zeigen damit erstmals, dass SLC-Transporter wie SLC5A3, SLC6A6 und vermutlich andere Vertreter der SLC-Superfamilie potentiell am Mechanismus der hypotonen Volumenregulation beteiligt sind. Da SLC-Transporter als wichtige Transportsysteme f{\"u}r Therapeutika angesehen werden und die Mechanismen der Volumenregulation bereits in zahlreichen biotechnologischen Anwendungen implementiert sind, k{\"o}nnte der hier aufgedeckte Zusammenhang einen Erkenntnisgewinn f{\"u}r zahlreiche biomedizinische Forschungsgebiete darstellen.}, subject = {S{\"a}ugetiere}, language = {de} } @incollection{AndersSchollSchartl1979, author = {Anders, F. and Scholl, E. and Schartl, Manfred}, title = {Xiphophorus als Modell in der Krebsforschung}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72752}, publisher = {Universit{\"a}t W{\"u}rzburg}, year = {1979}, abstract = {No abstract available.}, subject = {Schwertk{\"a}rpfling}, language = {de} } @phdthesis{Altrock2002, author = {Altrock, Stefanie}, title = {Genetische Organisation und Transkription eines Virulenz-assoziierten, instabilen Chromosomenabschnitts von Listeria ivanovii}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-3303}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {Unter den sechs Arten der Gattung Listeria finden sich nur zwei pathogene Spezies. L. monocytogenes ist pathogen f{\"u}r Mensch und Tier, L. ivanovii nur tierpathogen. Beide Arten besitzen ein Virulenzgencluster, das auch als Pathogenit{\"a}tsinsel LIPI-1 bezeichnet wird. Pathogenit{\"a}tsinseln (PAIs) sind bei gram-negativen Bakterien weit verbreitet, wurden bei gram-positiven Pathogenen bisher jedoch nur selten beschrieben. In L. ivanovii wurde nun ein weiterer Virulenz-assoziierter, instabiler Chromosomenabschnitt entdeckt, der in einem Teilbereich Eigenschaften einer Pathogenit{\"a}tsinsel besitzt. Ausgehend von einem spontanen, aber reproduzierbaren Deletionsereignis eines großen Genomabschnitts, der einige schon bekannte Virulenz-assoziierte Gene umfasst (i-inlE, i-inlF, smcL), wurden in Zusammenarbeit mit den Kooperationspartnern an der "Universidad Complutense de Madrid", insbesondere mit G. Dom{\´i}nguez-Bernal die komplette deletierte Region sowie flankierende Genombereiche genauer analysiert. Im Rahmen dieser Arbeit konnten rechts von dem bereits charakterisierten Gen smcL 13 neue Open Reading Frames (ORFs) bzw. Gene (ydeI, rnaH, norA) von L. ivanovii identifiziert werden, die gr{\"o}ßtenteils in der Deletionsmutante L. ivanovii GD-3 deletiert waren. F{\"u}r die meisten Open Reading Frames konnten Homologien zu ORFs in den Genomsequenzen von L. monocytogenes und der apathogenen Art L. innocua gefunden werden. Eigene experimentelle Analysen zeigten zudem, dass diese ORFs in {\"a}hnlicher Anordnung auch in den apathogenen Arten L. seeligeri und L. welshimeri vorhanden sind, was wahrscheinlich macht, dass sie nicht an der Virulenz von Listerien beteiligt sind. G. Dom{\´i}nguez-Bernal fand im links von smcL liegenden Bereich eine Reihe neuer Internalingene, die alle spezifisch f{\"u}r L. ivanovii sind. F{\"u}r die Gene i-inlE, i-inlF und smcL ist bereits bekannt, dass diese Virulenz-assoziiert sind. Dies f{\"u}hrte zur Definition einer neuen, LIPI-2 genannten Pathogenit{\"a}tsinsel in L. ivanovii, die außer smcL und i-inlFE alle neu gefundenen Internalingene umfasst. In dieser Arbeit durchgef{\"u}hrte Untersuchungen der LIPI-2 flankierenden Bereiche zeigten, dass diese in L. monocytogenes und auch den apathogenen Arten L. innocua, L. seeligeri und L. welshimeri bemerkenswert konserviert sind. Durch Transkriptionsuntersuchungen mittels RT-PCR wurde die Expression der neu identifizierten Gene analysiert. Hierbei wurden verschiedene Kulturbedingungen untersucht sowie die Transkription nach Infektion mehrerer Zelllinien bestimmt. Bei der Sequenzanalyse wurde f{\"u}r fast alle Internalingene eine PrfA-Box identifiziert und es best{\"a}tigte sich in dieser Arbeit, dass die meisten der Internalingene PrfA-abh{\"a}ngig exprimiert werden. Allerdings wiesen die einzelnen Gene kein einheitliches Transkriptionsprofil unter verschiedenen in vitro-Bedingungen auf. Eine Analyse der Genexpression nach Infektion verschiedener Zelllinien zeigte schließlich, dass die Internalingene w{\"a}hrend einer Infektion differentiell transkribiert werden und m{\"o}glicherweise am Infektionsgeschehen beteiligt sind. Das Expressionsmuster der zu LIPI-2 benachbarten Open Reading Frames best{\"a}tigte, dass diese Gene PrfA-unabh{\"a}ngig und unter verschiedenen Bedingungen konstitutiv exprimiert werden. Das Expressionsmuster dieser Gene l{\"a}ßt den Schluss zu, dass sie vermutlich nicht zur Virulenz von L. ivanovii beitragen. Die Untersuchung der Virulenzclustergene in LIPI-1 schließlich zeigte eine deutliche PrfA-Abh{\"a}ngigkeit der Genexpression. Es konnte best{\"a}tigt werden, dass deren Transkription unter PrfA-induzierenden Bedingungen verst{\"a}rkt wird. Zudem fand sich auch nach Infektion eine deutliche Expression dieser Gene.}, subject = {Listeria ivanovii}, language = {de} } @phdthesis{Albers2000, author = {Albers, Christine}, title = {Reinigung und Charakterisierung der alpha-Methylacyl-CoA-Racemase aus menschlicher Leber}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-770}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2000}, abstract = {Im Katabolismus methylverzweigter Fetts{\"a}uren spielt die alpha-Methylacyl-CoA-Racemase eine wichtige Rolle, indem sie die (R)- und (S)-Isomere von alpha-methylverzweigten Fetts{\"a}uren als Coenzym A Thioester racemisiert. Methylverzweigte Fetts{\"a}uren entstehen beim Abbau von Isoprenoiden und werden dar{\"u}ber hinaus auch von vielen Organismen, wie z.B. Mycobakterien, synthetisiert. Die Hauptaufgabe der Racemase ist aber vermutlich in der Biosynthese von Gallens{\"a}uren zu sehen. Das Ziel der vorliegenden Arbeit war es, die alpha-Methylacyl-CoA-Racemase aus humanem Gewebe zu reinigen und zu charakterisieren sowie ihre physiologische Rolle im Katabolismus verzweigtkettiger Fetts{\"a}uren und der Gallens{\"a}urebiosynthese zu untersuchen. Die alpha-Methylacyl-CoA-Racemase wurde aus humanem Gewebe zur Homogenit{\"a}t gereinigt, umfassend biochemisch charakterisiert und zur genauen molekularbiologischen Analyse in E.coli kloniert. Die Aktivit{\"a}t der Racemase wurde anhand der [³H]H2O-Freisetzung aus [alpha-³H]-a-Methylacyl-CoAs bestimmt. Die humane Racemase ist in der aktiven Form ein monomeres Protein und besteht aus 382 Aminos{\"a}uren. Als Substrate akzeptiert das Enzym ein breites Spektrum von alpha-Methylacyl-CoAs. Neben den Coenzym A-Thioestern alpha-methylverzweigter Fetts{\"a}uren, wie Pristans{\"a}ure, werden auch CoA-Ester von Steroidderivaten, z.B. des Gallens{\"a}ureintermediats Trihydroxycoprostans{\"a}ure, und aromatischen Phenylpropions{\"a}uren, wie dem Analgetikum Ibuprofen, umgesetzt. Freie Fetts{\"a}uren, geradkettige oder beta-methylverzweigte Acyl-CoAs werden nicht racemisiert. Die alpha-Methylacyl-CoA-Racemase ist im Menschen zu ca. 80 Prozent auf die Peroxisomen und ca. 20 Prozent auf die Mitochondrien verteilt, wobei entsprechende peroxisomale (PTS 1) und mitochondriale (MTS) Transportsignale die Lokalisation bestimmen. Die vollst{\"a}ndige cDNA-Sequenz der humanen a-Methylacyl-CoA-Racemase hat eine Gesamtl{\"a}nge von 2039 Basenpaaren mit einem offenen Leseraster von 89 - 1237 bp. Das Startcodon ATG ist in eine klassische Kozak-Sequenz zum Translationsstart eingebettet. Die Protein endet am C-Terminus mit dem Sequenzmotiv -KASL, das dem peroxisomalen Transportsignal (PTS I) einiger S{\"a}ugetierkatalasen entspricht. Aufgrund alternativer Polyadenylierung sind in allen untersuchten menschlichen Geweben Transkripte von 1,6 kb bzw. 2,0 kb zu finden. Es liegt keine gewebsabh{\"a}ngige Polyadenylierung vor, die Racemase wird aber gewebsspezifisch exprimiert (besonders stark in Leber und Niere). Das humane Racemasegen liegt auf dem kurzen Arm des Chromosoms 5 nahe am Centromer (5p1.3), im Intervall von D5S651 (46,6 cM) und D5S634 (59.9 cM).}, subject = {Alpha-Methylacyl-CoA racemase}, language = {de} } @phdthesis{Aichinger2007, author = {Aichinger, Eric}, title = {Risikoberechnung bei der Muskeldystrophie Duchenne und der Muskeldystrophie Becker}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-27000}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Risikoberechnung in Familien mit Muskeldystrophie Duchenne oder Muskeldystrophie Becker. Unter Ber{\"u}cksichtigung eines Keimzellmosaiks, heterogener Neumutationsraten und der M{\"o}glichkeit homozygot betroffener Frauen.}, language = {de} }