@phdthesis{Wagh2005, author = {Wagh, Dhananjay Anil}, title = {"Bruchpilot" -molecular and functional characterization of a novel active zone protein at the Drosophila synapse}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-14989}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Chemical neurotransmission is a complex process of central importance for nervous system function. It is thought to be mediated by the orchestration of hundreds of proteins for its successful execution. Several synaptic proteins have been shown to be relevant for neurotransmission and many of them are highly conserved during evolution- suggesting a universal mechanism for neurotransmission. This process has checkpoints at various places like, neurotransmitter uptake into the vesicles, relocation of the vesicles to the vicinity of calcium channels in order to facilitate Ca2+ induced release thereby modulating the fusion probability, formation of a fusion pore to release the neurotransmitter and finally reuptake of the vesicles by endocytosis. Each of these checkpoints has now become a special area of study and maintains its own importance for the understanding of the overall process. Ca2+ induced release occurs at specialized membrane structures at the synapse known as the active zones. These are highly ordered electron dense grids and are composed of several proteins which assist the synaptic vesicles in relocating in the vicinity of Ca2+ channels thereby increasing their fusion probability and then bringing about the vesicular fusion itself. All the protein modules needed for these processes are thought to be held in tight arrays at the active zones, and the functions of a few have been characterized so far at the vertebrate active zones. Our group is primarily interested in characterizing the molecular architecture of the Drosophila synapse. Due to its powerful genetics and well-established behavioural assays Drosophila is an excellent system to investigate neuronal functioning. Monoclonal antibodies (MABs) from a hybridoma library against Drosophila brain are routinely used to detect novel proteins in the brain in a reverse genetic approach. Upon identification of the protein its encoding genetic locus is characterized and a detailed investigation of its function is initiated. This approach has been particularly useful to detect synaptic proteins, which may go undetected in a forward genetic approach due to lack of an observable phenotype. Proteins like CSP, Synapsin and Sap47 have been identified and characterized using this approach so far. MAB nc82 has been one of the shortlisted antibodies from the same library and is widely used as a general neuropil marker due to the relative transparency of immunohistochemical whole mount staining obtained with this antibody. A careful observation of double stainings at the larval neuromuscular junctions with MAB nc82 and other pre and post-synaptic markers strongly suggested an active zone localization of the nc82 antigen. Synaptic architecture is well characterized in Drosophila at the ultrastructural level. However, molecular details for many synaptic components and especially for the active zone are almost entirely unknown. A possible localization at the active zone for the nc82 antigen served as the motivation to initiate its biochemical characterization and the identification of the encoding gene. In the present thesis it is shown by 2-D gel analysis and mass spectrometry that the nc82 antigen is a novel active zone protein encoded by a complex genetic locus on chromosome 2R. By RT-PCR exons from three open reading frames previously annotated as separate genes are demonstrated to give rise to a transcript of at least 5.5 kb. Northern blots produce a prominent signal of 11 kb and a weak signal of 2 kb. The protein encoded by the 5.5 kb transcript is highly conserved amongst insects and has at its N-terminus significant homology to the previously described vertebrate active zone protein ELKS/ERC/CAST. Bioinformatic analysis predicts coiled-coil domains spread all over the sequence and strongly suggest a function involved in organizing or maintaining the structure of the active zone. The large C-terminal region is highly conserved amongst the insects but has no clear homologues in veretebrates. For a functional analysis of this protein transgenic flies expressing RNAi constructs under the control of the Gal4 regulated enhancer UAS were kindly provided by the collaborating group of S.Sigrist (G\&\#1616;ttingen). A strong pan-neuronal knockdown of the nc82 antigen by transgenic RNAi expression leads to embryonic lethality. A relatively weaker RNAi expression results in behavioural deficits in adult flies including unstable flight and impaired walking behavior. Due to this peculiar phenotype as observed in the first knockdown studies the gene was named "bruchpilot" (brp) encoding the protein "Bruchpilot (BRP)" (German for crash pilot). A pan-neuronal as well as retina specific downregulation of this protein results in loss of ON and OFF transients in ERG recordings indicating dysfunctional synapses. Retina specific downregulation also shows severely impaired optomotor behaviour. Finally, at an ultrastructural level BRP downregulation seems to impair the formation of the characteristic T-shaped synaptic ribbons at the active zones without significantly altering the overall synaptic architecture (in collaboration with E.Asan). Vertebrate active zone protein Bassoon is known to be involved in attaching the synaptic ribbons to the active zones as an adapter between active zone proteins RIBEYE and ERC/CAST. A mutation in Bassoon results in a floating synaptic ribbon phenotype. No protein homologous to Bassoon has been observed in Drosophila. BRP downregulation also results in absence of attached synaptic ribbons at the active zones. This invites the speculation of an adapter like function for BRP in Drosophila. However, while Bassoon mutant mice are viable, BRP deficit in addition to the structural phenotype also results in severe behavioural and physiological anomalies and even stronger downregulation causes embryonic lethality. This therefore suggests an additional and even more important role for BRP in development and normal functioning of synapses in Drosophila and also in other insects. However, how BRP regulates synaptic transmission and which other proteins are involved in this BRP dependant pathway remains to be investigated. Such studies certainly will attract prominent attention in the future.}, subject = {Taufliege}, language = {en} } @phdthesis{Beer2021, author = {Beer, Katharina}, title = {A Comparison of the circadian clock of highly social bees (\(Apis\) \(mellifera\)) and solitary bees (\(Osmia\) \(spec.\)): Circadian clock development, behavioral rhythms and neuroanatomical characterization of two central clock components (PER and PDF)}, doi = {10.25972/OPUS-15976}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159765}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Summary Bees, like many other organisms, evolved an endogenous circadian clock, which enables them to foresee daily environmental changes and exactly time foraging flights to periods of floral resource availability. The social lifestyle of a honey bee colony has been shown to influence circadian behavior in nurse bees, which do not exhibit rhythmic behavior when they are nursing. On the other hand, forager bees display strong circadian rhythms. Solitary bees, like the mason bee, do not nurse their offspring and do not live in hive communities, but face the same daily environmental changes as honey bees. Besides their lifestyle mason and honey bees differ in their development and life history, because mason bees overwinter after eclosion as adults in their cocoons until they emerge in spring. Honey bees do not undergo diapause and have a relatively short development of a few weeks until they emerge. In my thesis, I present a comparison of the circadian clock of social honey bees (Apis mellifera) and solitary mason bees (Osmia bicornis and Osmia cornuta) on the neuroanatomical level and behavioral output level. I firstly characterized in detail the localization of the circadian clock in the bee brain via the expression pattern of two clock components, namely the clock protein PERIOD (PER) and the neuropeptide Pigment Dispersing Factor (PDF), in the brain of honey bee and mason bee. PER is localized in lateral neuron clusters (which we called lateral neurons 1 and 2: LN1 and LN2) and dorsal neuron clusters (we called dorsal lateral neurons and dorsal neurons: DLN, DN), many glia cells and photoreceptor cells. This expression pattern is similar to the one in other insect species and indicates a common ground plan of clock cells among insects. In the LN2 neuron cluster with cell bodies located in the lateral brain, PER is co-expressed with PDF. These cells build a complex arborization network throughout the brain and provide the perfect structure to convey time information to brain centers, where complex behavior, e.g. sun-compass orientation and time memory, is controlled. The PDF arborizations centralize in a dense network (we named it anterio-lobular PDF hub: ALO) which is located in front of the lobula. In other insects, this fiber center is associated with the medulla (accessory medulla: AME). Few PDF cells build the ALO already in very early larval development and the cell number and complexity of the network grows throughout honey bee development. Thereby, dorsal regions are innervated first by PDF fibers and, in late larval development, the fibers grow laterally to the optic lobe and central brain. The overall expression pattern of PER and PDF are similar in adult social and solitary bees, but I found a few differences in the PDF network density in the posterior protocerebrum and the lamina, which may be associated with evolution of sociality in bees. Secondly, I monitored activity rhythms, for which I developed and established a device to monitor locomotor activity rhythms of individual honey bees with contact to a mini colony in the laboratory. This revealed new aspects of social synchronization and survival of young bees with indirect social contact to the mini colony (no trophalaxis was possible). For mason bees, I established a method to monitor emergence and locomotor activity rhythms and I could show that circadian emergence rhythms are entrainable by daily temperature cycles. Furthermore, I present the first locomotor activity rhythms of solitary bees, which show strong circadian rhythms in their behavior right after emergence. Honey bees needed several days to develop circadian locomotor rhythms in my experiments. I hypothesized that honey bees do not emerge with a fully matured circadian system in the hive, while solitary bees, without the protection of a colony, would need a fully matured circadian clock right away after emergence. Several indices in published work and preliminary studies support my hypothesis and future studies on PDF expression in different developmental stages in solitary bees may provide hard evidence.}, subject = {Chronobiologie}, language = {en} } @phdthesis{Hackl2016, author = {Hackl, Thomas}, title = {A draft genome for the Venus flytrap, Dionaea muscipula : Evaluation of assembly strategies for a complex Genome - Development of novel approaches and bioinformatics solutions}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133149}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {The Venus flytrap, \textit{Dionaea muscipula}, with its carnivorous life-style and its highly specialized snap-traps has fascinated biologist since the days of Charles Darwin. The goal of the \textit{D. muscipula} genome project is to gain comprehensive insights into the genomic landscape of this remarkable plant. The genome of the diploid Venus flytrap with an estimated size between 2.6 Gbp to 3.0 Gbp is comparatively large and comprises more than 70 \% of repetitive regions. Sequencing and assembly of genomes of this scale are even with state-of-the-art technology and software challenging. Initial sequencing and assembly of the genome was performed by the BGI (Beijing Genomics Institute) in 2011 resulting in a 3.7 Gbp draft assembly. I started my work with thorough assessment of the delivered assembly and data. My analysis showed that the BGI assembly is highly fragmented and at the same time artificially inflated due to overassembly of repetitive sequences. Furthermore, it only comprises about on third of the expected genes in full-length, rendering it inadequate for downstream analysis. In the following I sought to optimize the sequencing and assembly strategy to obtain an assembly of higher completeness and contiguity by improving data quality and assembly procedure and by developing tailored bioinformatics tools. Issues with technical biases and high levels of heterogeneity in the original data set were solved by sequencing additional short read libraries from high quality non-polymorphic DNA samples. To address contiguity and heterozygosity I examined numerous alternative assembly software packages and strategies and eventually identified ALLPATHS-LG as the most suited program for assembling the data at hand. Moreover, by utilizing digital normalization to reduce repetitive reads, I was able to substantially reduce computational demands while at the same time significantly increasing contiguity of the assembly. To improve repeat resolution and scaffolding, I started to explore the novel PacBio long read sequencing technology. Raw PacBio reads exhibit high error rates of 15 \% impeding their use for assembly. To overcome this issue, I developed the PacBio hybrid correction pipeline proovread (Hackl et al., 2014). proovread uses high coverage Illumina read data in an iterative mapping-based consensus procedure to identify and remove errors present in raw PacBio reads. In terms of sensitivity and accuracy, proovread outperforms existing software. In contrast to other correction programs, which are incapable of handling data sets of the size of D. muscipula project, proovread's flexible design allows for the efficient distribution of work load on high-performance computing clusters, thus enabling the correction of the Venus flytrap PacBio data set. Next to the assembly process itself, also the assessment of the large de novo draft assemblies, particularly with respect to coverage by available sequencing data, is difficult. While typical evaluation procedures rely on computationally extensive mapping approaches, I developed and implemented a set of tools that utilize k-mer coverage and derived values to efficiently compute coverage landscapes of large-scale assemblies and in addition allow for automated visualization of the of the obtained information in comprehensive plots. Using the developed tools to analyze preliminary assemblies and by combining my findings regarding optimizations of the assembly process, I was ultimately able to generate a high quality draft assembly for D. muscipula. I further refined the assembly by removal of redundant contigs resulting from separate assembly of heterozygous regions and additional scaffolding and gapclosing using corrected PacBio data. The final draft assembly comprises 86 × 10 3 scaffolds and has a total size of 1.45 Gbp. The difference to the estimated genomes size is well explained by collapsed repeats. At the same time, the assembly exhibits high fractions full-length gene models, corroborating the interpretation that the obtained draft assembly provides a complete and comprehensive reference for further exploration of the fascinating biology of the Venus flytrap.}, subject = {Venusfliegenfalle}, language = {en} } @phdthesis{ElMasri2005, author = {El-Masri, Harun}, title = {A genetic analysis of somitogenesis in the Medaka (Oryzias latipes)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-14515}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Somites are repeated epithelial segments that are generated in a rhythmic manner from the presomitic mesoderm (PSM) in the embryonic tailbud. Later, they differentiate into skeletal muscle, cartilage and dermis. Somitogenesis is regulated by a complex interplay of different pathways. Notch/Delta signaling is one of the pathways well characterized in zebrafish through mutants affected in its different components. Previous work in mouse, chicken and zebrafish has shown that also additional components are required during somitogenesis, most importantly through an FGF and Retinoic acid (RA) gradient, as well as Wnt signaling. However, no zebrafish mutants with defects in these pathways showing specific somite malformations are described. This was explained by functional redundancies among related genes that have resulted from a whole genome duplication which occurred in a teleost fish ancestor 350 million years ago. As distinct duplicates exist in different teleost species, a large scale mutagenesis screen in the medaka (Oryzias latipes) has been performed successfully in Kyoto, Japan. I analyzed nine of the isolated medaka mutants that show variable aspects of somitic phenotypes. This includes a complete or partial loss of somite boundaries (e.g. bms and sne), somites with irregular sizes and shapes (e.g. krz and fsl) or partially fused and enlarged somites (e.g. dpk). Although some of these medaka mutants share characteristics with previously described zebrafish somite mutants, most of the mutants represent unique phenotypes, not obtained in the zebrafish screens. In-situ hybridization analyses with marker genes implicated in the segmentation clock (e.g. her7), establishment of anterior-posterior (A-P) polarity (e.g. mesp) and differentiation of somites (e.g. myf5, lfng) revealed that the medaka mutants can be separated into two classes. Class I shows defects in tailbud formation and PSM prepatterning, and lateron somite boundary formation was impaired in these mutants. A unique member of this class with a novel phenotype is the doppelkorn (dpk) mutant that has single fused or enlarged somites. This phenotype has not been reported till now in zebrafish somite mutants. In-situ analyses on dpk showed that stabilization of the cyclically expressed somitogenesis clock genes must be affected in this mutant. This is accompanied by a disrupted regulation of A-P polarity genes like mesp. This suggests that dpk is a mutant deficient in the wave front, which is necessary for the down-regulation of oscillating genes in the anterior PSM. Furthermore, as the initiation of oscillation of all three cyclic her genes was unaffected in dpk embryos, I could exclude that this mutant in affected in the Notch/Delta pathway. Another mutant that belongs to this class is the samidare (sam) mutant. Morphologically, sam mutants are similar to zebrafish after eight (aei). In both cases, the first 7-9 somites are formed properly, but after this somite formation ceases. Different to the situation in aei, sam mutant embryos presented an additional defect in the mid-hindbrain boundary (MHB) region. Similar MHB defects were described in the zebrafish fgf8 mutant acerebellar (ace). In ace zebrafish mutant, somites were only slightly defective, although FGF signaling has been shown to be important for somite formation in chicken, mouse and zebrafish. This was explained by functional redundancy between fgf8 and fgf24 ligands in the tailbud of zebrafish. Thus, it is interesting to suggest that the sam mutant, based on the parallel defects in somites and MHB, is a potential member of the FGF signaling pathway muatnts. It was shown that FGF plays a crucial role during MHB formation in medaka. In addition, I showed that fgf8 acts non-redundantly during tailbud formation and somitogenesis in medaka. Furthermore, I showed that FGF signaling regulates somite size also in medaka and that fgfr1 is the only FGF receptor expressed in the tailbud and somites. In class II medaka somite mutants, PSM prepatterning appears normal, whereas A-P polarity, boundary formation, epithelialization or the later differentiation of somites appears to be affected. Such mutants have not been isolated so far in zebrafish, mice or chicken. Therefore, medaka class II somite mutants seem to be a novel group of mutants that opens new perspectives to analyze A-P polarity regulation, determination and boundary formation in the presence of a normally functioning clock in the PSM. Identifying the encoding genes for all analyzed medaka somite mutants will contribute to the understanding of the molecular interactions of different signaling pathways involved during somitogenesis, and is expected to result in the identification of new components.}, subject = {Japank{\"a}rpfling}, language = {en} } @phdthesis{Xu2014, author = {Xu, Jiajia}, title = {A high-complexity lentiviral shRNA screen identifies synthetic lethal interactions with deregulated N-Myc in neuroblastoma cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-103157}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In contrast to c-Myc, a deregulated expression of the MYCN gene is restricted to human neuroendocrine tumours. In most cases, the excessive activity of N-Myc results from a MYCN amplification. In neuroblastoma, amplification of MYCN is a predictor of poor prognosis and resistance to therapy. The inability to target the N-Myc protein directly necessitates the search for alternative targets. This project aimed at identifying genes specifically required for growth and survival of cells that express high levels of N-Myc using high-throughput shRNA screening combined with next generation sequencing. The identification and analysis of these genes will shed light on functional interaction partners of N-Myc. We screened a shRNA library containing 18,327 shRNAs and identified 148 shRNAs, which were selectively depleted in the presence of active N-Myc. In addition, shRNAs targeting genes that are involved in p53 and ARF turnover and apoptosis were depleted in the cell population during the screen. These processes are known to affect N-Myc-mediated apoptosis. Consequently, these results biologically validated the screen. The 148 shRNAs that showed a significant synthetic lethal interaction with high levels of N-Myc expression were further analysed using the bioinformatics program DAVID. We found an enrichment of shRNAs that target genes involved in specific biological processes. For example, we validated synthetic lethal interactions for genes such as, THOC1, NUP153 and LARP7, which play an important role in the process of RNA polymerase II-mediated transcription elongation. We also validated genes that are involved in the neddylation pathway. In the screen we identified Cullin 3, which is a component of the BTB-CUL3-Rbx1 ubiquitin ligase that is involved in the turnover of Cyclin E. Depletion of cullin 3 and activation of N-Myc was found to synergistically increase Cyclin E expression to supraphysiological levels, inducing S-phase arrest and a strong DNA damage response. Together with results from a proteomics analysis of N-Myc associated proteins, our results lead us to the following hypothesis: In a neuroblastoma cell, the high levels of N-Myc result in a conflict between RNA polymerase II and the replication machinery during S-phase. The newly identified interaction partners of N- Myc are required to solve this conflict. Consequently, loss of the interaction leads to a massive DNA damage and the induction of apoptosis. In addition, inhibition or depletion of the essential components of the neddylation pathway also results in an unresolvable problem during S-phase.}, subject = {Neuroblastom}, language = {en} } @phdthesis{Breitenbach2019, author = {Breitenbach, Tim}, title = {A mathematical optimal control based approach to pharmacological modulation with regulatory networks and external stimuli}, doi = {10.25972/OPUS-17436}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174368}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {In this work models for molecular networks consisting of ordinary differential equations are extended by terms that include the interaction of the corresponding molecular network with the environment that the molecular network is embedded in. These terms model the effects of the external stimuli on the molecular network. The usability of this extension is demonstrated with a model of a circadian clock that is extended with certain terms and reproduces data from several experiments at the same time. Once the model including external stimuli is set up, a framework is developed in order to calculate external stimuli that have a predefined desired effect on the molecular network. For this purpose the task of finding appropriate external stimuli is formulated as a mathematical optimal control problem for which in order to solve it a lot of mathematical methods are available. Several methods are discussed and worked out in order to calculate a solution for the corresponding optimal control problem. The application of the framework to find pharmacological intervention points or effective drug combinations is pointed out and discussed. Furthermore the framework is related to existing network analysis tools and their combination for network analysis in order to find dedicated external stimuli is discussed. The total framework is verified with biological examples by comparing the calculated results with data from literature. For this purpose platelet aggregation is investigated based on a corresponding gene regulatory network and associated receptors are detected. Furthermore a transition from one to another type of T-helper cell is analyzed in a tumor setting where missing agents are calculated to induce the corresponding switch in vitro. Next a gene regulatory network of a myocardiocyte is investigated where it is shown how the presented framework can be used to compare different treatment strategies with respect to their beneficial effects and side effects quantitatively. Moreover a constitutively activated signaling pathway, which thus causes maleficent effects, is modeled and intervention points with corresponding treatment strategies are determined that steer the gene regulatory network from a pathological expression pattern to physiological one again.}, subject = {Bioinformatik}, language = {en} } @phdthesis{Dehmer2024, author = {Dehmer, Markus}, title = {A novel USP11-TCEAL1-mediated mechanism protects transcriptional elongation by RNA Polymerase II}, doi = {10.25972/OPUS-36054}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-360544}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Deregulated expression of MYC oncoproteins is a driving event in many human cancers. Therefore, understanding and targeting MYC protein-driven mechanisms in tumor biology remain a major challenge. Oncogenic transcription in MYCN-amplified neuroblastoma leads to the formation of the MYCN-BRCA1-USP11 complex that terminates transcription by evicting stalling RNAPII from chromatin. This reduces cellular stress and allows reinitiation of new rounds of transcription. Basically, tumors with amplified MYC genes have a high demand on well orchestration of transcriptional processes-dependent and independent from MYC proteins functions in gene regulation. To date, the cooperation between promoter-proximal termination and transcriptional elongation in cancer cells remains still incomplete in its understanding. In this study the putative role of the dubiquitinase Ubiquitin Specific Protease 11 (USP11) in transcription regulation was further investigated. First, several USP11 interaction partners involved in transcriptional regulation in neuroblastoma cancer cells were identified. In particular, the transcription elongation factor A like 1 (TCEAL1) protein, which assists USP11 to engage protein-protein interactions in a MYCN-dependent manner, was characterized. The data clearly show that TCEAL1 acts as a pro-transcriptional factor for RNA polymerase II (RNAPII)-medi- ated transcription. In detail, TCEAL1 controls the transcription factor S-II (TFIIS), a factor that assists RNAPII to escape from paused sites. The findings claim that TCEAL1 outcompetes the transcription elongation factor TFIIS in a non-catalytic manner on chromatin of highly expressed genes. This is reasoned by the need regulating TFIIS function in transcription. TCEAL1 equili- brates excessive backtracking and premature termination of transcription caused by TFIIS. Collectively, the work shed light on the stoichiometric control of TFIIS demand in transcriptional regulation via the USP11-TCEAL1-USP7 complex. This complex protects RNAPII from TFIIS-mediated termination helping to regulate productive transcription of highly active genes in neuroblastoma.}, subject = {Transkription}, language = {en} } @phdthesis{Rapp2004, author = {Rapp, Ulrike}, title = {Achieving protective immunitity against intracellular bacterial pathogens : a study on the efficiency of Gp96 as a vaccine carrier}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-9096}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Protective vaccination against intracellular pathogens using HSP fusion proteins in the listeria model.}, subject = {Listeria monocytogenes}, language = {en} } @phdthesis{Cseh1999, author = {Cseh, Richard}, title = {Adsorption of phloretin to lipid layers}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-1069}, school = {Universit{\"a}t W{\"u}rzburg}, year = {1999}, abstract = {The mode of action of phloretin and its analogs on the permeability of natural membranes for neutral and charged molecules, such as urea, glucose and chloride has been characterized 25 years ago. In contrast to signal molecules with primary effects on transport systems of natural membranes, phloretin also affects model membranes, i.e., artificial membranes, which do not contain proteins. Since the dipole potential reducing effect of phloretin on mono- and bilayers has been found, it became clear that its primary effect must be a biophysical one: phloretin adsorbs to lipid layers and changes biophysical parameters of these layers. The aim of this work was the characterization of the interaction between the surface-active molecule phloretin and artificial lipid layers. We were able to describe structural and functional parameters of the model systems mono- and bilayer as functions of one or few variables. One of these parameters, the dipole potential, measured as a function of the aqueous phloretin concentration, allowed a critical examination of the Langmuir adsorption model that has been postulated for the interaction between phloretin and lipid layers. Surface pressure versus area per lipid molecule isotherms and surface (dipole) potential change versus area per lipid molecule isotherms, measured at lipid monolayers, allowed a structural description of the phloretin-lipid interaction: phloretin integrates into monolayers dependent on the surface pressure and the phase state of the lipid. Calorimetric measurements confirmed the integration of phloretin into membranes because of the strong decrease of the phase transition temperature, but they also showed that the cooperativity of phase transition is hardly affected, even at very high amounts of phloretin in the membrane. Obviously the interaction between phloretin and lipids is restricted to the head groups, an integration into the hydrocarbon layer is unlikely. 2H NMR measurements with spherical unilamellar vesicles of headgroup-deuterated lipid showed changed quadrupolar splittings indicating the interaction between phloretin and headgroups of the lipids.}, subject = {Phloretin}, language = {en} } @phdthesis{Franke2019, author = {Franke, Christian}, title = {Advancing Single-Molecule Localization Microscopy: Quantitative Analyses and Photometric Three-Dimensional Imaging}, doi = {10.25972/OPUS-15635}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-156355}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Since its first experimental implementation in 2005, single-molecule localization microscopy (SMLM) emerged as a versatile and powerful imaging tool for biological structures with nanometer resolution. By now, SMLM has compiled an extensive track-record of novel insights in sub- and inter- cellular organization.\\ Moreover, since all SMLM techniques rely on the analysis of emission patterns from isolated fluorophores, they inherently allocate molecular information \$per\$ \$definitionem\$.\\ Consequently, SMLM transitioned from its origin as pure high-resolution imaging instrument towards quantitative microscopy, where the key information medium is no longer the highly resolved image itself, but the raw localization data set.\\ The work presented in this thesis is part of the ongoing effort to translate those \$per\$ \$se\$ molecular information gained by SMLM imaging to insights into the structural organization of the targeted protein or even beyond. Although largely consistent in their objectives, the general distinction between global or segmentation clustering approaches on one side and particle averaging or meta-analyses techniques on the other is usually made.\\ During the course of my thesis, I designed, implemented and employed numerous quantitative approaches with varying degrees of complexity and fields of application.\\ \\ In my first major project, I analyzed the localization distribution of the integral protein gp210 of the nuclear pore complex (NPC) with an iterative \textit{k}-means algorithm. Relating the distinct localization statistics of separated gp210 domains to isolated fluorescent signals led, among others, to the conclusion that the anchoring ring of the NPC consists of 8 homo-dimers of gp210.\\ This is of particular significance, both because it answered a decades long standing question about the nature of the gp210 ring and it showcased the possibility to gain structural information well beyond the resolution capabilities of SMLM by crafty quantification approaches.\\ \\ The second major project reported comprises an extensive study of the synaptonemal complex (SNC) and linked cohesin complexes. Here, I employed a multi-level meta-analysis of the localization sets of various SNC proteins to facilitate the compilation of a novel model of the molecular organization of the major SNC components with so far unmatched extend and detail with isotropic three-dimensional resolution.\\ In a second venture, the two murine cohesin components SMC3 and STAG3 connected to the SNC were analyzed. Applying an adapted algorithm, considering the disperse nature of cohesins, led to the realization that there is an apparent polarization of those cohesin complexes in the SNC, as well as a possible sub-structure of STAG3 beyond the resolution capabilities of SMLM.\\ \\ Other minor projects connected to localization quantification included the study of plasma membrane glycans regarding their overall localization distribution and particular homogeneity as well as the investigation of two flotillin proteins in the membrane of bacteria, forming clusters of distinct shapes and sizes.\\ \\ Finally, a novel approach to three-dimensional SMLM is presented, employing the precise quantification of single molecule emitter intensities. This method, named TRABI, relies on the principles of aperture photometry which were improved for SMLM.\\ With TRABI it was shown, that widely used Gaussian fitting based localization software underestimates photon counts significantly. This mismatch was utilized as a \$z\$-dependent parameter, enabling the conversion of 2D SMLM data to a virtual 3D space. Furthermore it was demonstrated, that TRABI can be combined beneficially with a multi-plane detection scheme, resulting in superior performance regarding axial localization precision and resolution.\\ Additionally, TRABI has been subsequently employed to photometrically characterize a novel dye for SMLM, revealing superior photo-physical properties at the single-molecule level.\\ Following the conclusion of this thesis, the TRABI method and its applications remains subject of diverse ongoing research.}, subject = {Einzelmolek{\"u}lmikroskopie}, language = {en} }